The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space

被引:305
作者
Bauschke, HH
机构
[1] Ctr. for Exp. and Constr. Math., Simon Fraser University, Burnaby
关键词
D O I
10.1006/jmaa.1996.0308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Determining fixed points of nonexpansive mappings is a frequent problem in mathematics and physical sciences. An algorithm for finding common fixed points of nonexpansive mappings in Hilbert space, essentially due to nalpern, is analyzed. The main theorem extends Wittmann's recent work and partially generalizes a result by Lions. Algorithms of this kind have been applied to the convex feasibility problem. (C) 1996 Academic Press. Inc.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 16 条
[1]  
BAUSCHKE HH, 1995, IN PRESS CONT MATH
[2]  
BAUSCHKE HH, IN PRESS SIAM REV
[3]  
Bauschke HH., 1993, Set-Valued Analysis, V1, P185, DOI [DOI 10.1007/BF01027691, DOI 10.1007/BF01027691.49,50, 10.1007/BF01027691]
[4]   KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES [J].
BORWEIN, J ;
REICH, S ;
SHAFRIR, I .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01) :21-28
[5]  
BROWDER FE, 1967, ARCH RATION MECH AN, V24, P82
[6]  
COMBETTES PL, 1993, P IEEE, V81, P182, DOI 10.1109/5.214546
[7]   INCONSISTENT SIGNAL FEASIBILITY PROBLEMS - LEAST-SQUARES SOLUTIONS IN A PRODUCT SPACE [J].
COMBETTES, PL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :2955-2966
[8]   EXAMPLE CONCERNING FIXED-POINTS [J].
GENEL, A ;
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 22 (01) :81-92
[9]  
GOEBEL K., 1984, MONOGRAPHS TXB PURE, V83
[10]  
Goebel K., 1990, Cambridge Stud. Adv. Math., V28