Completely positive quantum dissipation

被引:111
作者
Vacchini, B
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
[3] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
关键词
D O I
10.1103/PhysRevLett.84.1374
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A completely positive master equation describing quantum dissipation for a Brownian particle is derived starting from microphysical collisions, exploiting a recently introduced approach to subdynamics of a macrosystem. The obtained equation can be cast into Lindblad form with a single generator for each Cartesian direction. Temperature dependent friction and diffusion coefficients for both position and momentum are expressed in terms of the collision cross section.
引用
收藏
页码:1374 / 1377
页数:4
相关论文
共 37 条
[1]   REDUCED DYNAMICS NEED NOT BE COMPLETELY POSITIVE - COMMENTS [J].
ALICKI, R .
PHYSICAL REVIEW LETTERS, 1995, 75 (16) :3020-3020
[2]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[3]   QUANTUM BROWNIAN-MOTION AND ITS CLASSICAL LIMIT [J].
AMBEGAOKAR, V .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1991, 95 (03) :400-404
[4]  
[Anonymous], 1996, DECOHERENCE APPEARAN
[5]   CONTINUAL MEASUREMENTS FOR QUANTUM OPEN SYSTEMS [J].
BARCHIELLI, A .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1983, 74 (02) :113-138
[6]   Observing the progressive decoherence of the ''meter'' in a quantum measurement [J].
Brune, M ;
Hagley, E ;
Dreyer, J ;
Maitre, X ;
Maali, A ;
Wunderlich, C ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4887-4890
[7]   PATH INTEGRAL APPROACH TO QUANTUM BROWNIAN-MOTION [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICA A, 1983, 121 (03) :587-616
[8]   On the physical content of Lindblad form master equations [J].
de Berredo, RC ;
de Faria, JGP ;
Camargo, F ;
Nemes, MC ;
Borges, HE ;
Romero, KMF ;
Piza, AFRD ;
Salgueiro, AN .
PHYSICA SCRIPTA, 1998, 57 (04) :533-534
[9]   QUANTIZATION OF LINEARLY DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICAL REVIEW A, 1977, 16 (05) :2126-2134
[10]   CLASSICAL AND QUANTUM-MECHANICS OF THE DAMPED HARMONIC-OSCILLATOR [J].
DEKKER, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1981, 80 (01) :1-112