Biochemical characterization and intracellular localization of the Menkes disease protein

被引:178
作者
Yamaguchi, Y [1 ]
Heiny, ME [1 ]
Suzuki, M [1 ]
Gitlin, JD [1 ]
机构
[1] WASHINGTON UNIV,SCH MED,EDWARD MALLINCKRODT DEPT PEDIAT,ST LOUIS,MO 63110
关键词
D O I
10.1073/pnas.93.24.14030
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Menkes disease is a fatal neurodegenerative disorder of childhood due to the absence or dysfunction of a putative copper-transporting P-type ATPase encoded on the X chromosome. To elucidate the biosynthesis and subcellular localization of this protein, polyclonal antisera were generated against a bacterial fusion protein encoding the 4th to 6th copper-binding domains in the amino terminus of the human Menkes protein. RNA blot analysis revealed abundant Menkes gene expression in several cell lines, and immunoblotting studies utilizing this antiserum readily detected a 178-kDa protein in lysates from these cells. Pulse-chase studies indicate that this protein is synthesized as a single-chain polypeptide which is modified by N-linked glycosylation to a mature endoglycosidase H-resistant form, Sucrose gradient fractionation of HeLa cell lysates followed by immunoblotting of individual fractions with antibodies to proteins of known intracellular location identified the Menkes ATPase in fractions similar to those containing the cation-independent mannose-6-phosphate receptor. Consistent with this observation, confocal immunofluorescence studies of these same cells localized this protein to the trans-Golgi network and a vesicular compartment with no expression in the nucleus or on the plasma membrane. Taken together, these data provide a unique model of copper transport into the secretory pathway of mammalian cells which is compatible with clinical observations in affected patients and with recent data on homologous proteins identified in prokaryotes and yeast.
引用
收藏
页码:14030 / 14035
页数:6
相关论文
共 40 条
[1]   THE WILSON DISEASE GENE IS A PUTATIVE COPPER TRANSPORTING P-TYPE ATPASE SIMILAR TO THE MENKES GENE [J].
BULL, PC ;
THOMAS, GR ;
ROMMENS, JM ;
FORBES, JR ;
COX, DW .
NATURE GENETICS, 1993, 5 (04) :327-337
[2]   WILSON DISEASE AND MENKES DISEASE - NEW HANDLES ON HEAVY-METAL TRANSPORT [J].
BULL, PC ;
COX, DW .
TRENDS IN GENETICS, 1994, 10 (07) :246-252
[3]   ALTERED COPPER-METABOLISM IN CULTURED-CELLS FROM HUMAN MENKES SYNDROME AND MOTTLED MOUSE MUTANTS [J].
CAMAKARIS, J ;
DANKS, DM ;
ACKLAND, L ;
CARTWRIGHT, E ;
BORGER, P ;
COTTON, RGH .
BIOCHEMICAL GENETICS, 1980, 18 (1-2) :117-131
[4]   GENE AMPLIFICATION OF THE MENKES (MNK, ATP7A) P-TYPE ATPASE GENE OF CHO CELLS IS ASSOCIATED WITH COPPER RESISTANCE AND ENHANCED COPPER EFFLUX [J].
CAMAKARIS, J ;
PETRIS, MJ ;
BAILEY, L ;
SHEN, PY ;
LOCKHART, P ;
GLOVER, TW ;
BARCROFT, CL ;
PATTON, J ;
MERCER, JFB .
HUMAN MOLECULAR GENETICS, 1995, 4 (11) :2117-2123
[5]   ISOLATION OF A CANDIDATE GENE FOR MENKES DISEASE THAT ENCODES A POTENTIAL HEAVY-METAL BINDING-PROTEIN [J].
CHELLY, J ;
TUMER, Z ;
TONNESEN, T ;
PETTERSON, A ;
ISHIKAWABRUSH, Y ;
TOMMERUP, N ;
HORN, N ;
MONACO, AP .
NATURE GENETICS, 1993, 3 (01) :14-19
[6]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[7]   MOLECULAR-STRUCTURE OF THE MENKES DISEASE GENE (ATP7A) [J].
DIERICK, HA ;
AMBROSINI, L ;
SPENCER, J ;
GLOVER, TW ;
MERCER, JFB .
GENOMICS, 1995, 28 (03) :462-469
[8]   Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase [J].
Glerum, DM ;
Shtanko, A ;
Tzagoloff, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (24) :14504-14509
[9]   MENKES DISEASE - BIOCHEMICAL ABNORMALITY IN CULTURED HUMAN FIBROBLASTS [J].
GOKA, TJ ;
STEVENSON, RE ;
HEFFERAN, PM ;
HOWELL, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (02) :604-606
[10]   THE MANNOSE 6-PHOSPHATE RECEPTOR AND THE BIOGENESIS OF LYSOSOMES [J].
GRIFFITHS, G ;
HOFLACK, B ;
SIMONS, K ;
MELLMAN, I ;
KORNFELD, S .
CELL, 1988, 52 (03) :329-341