Mixing properties of the Swendsen-Wang process on the complete graph and narrow grids

被引:19
作者
Cooper, C [1 ]
Dyer, ME
Frieze, AM
Rue, R
机构
[1] Univ N London, Sch Math Sci, London N7 8DB, England
[2] Univ Leeds, Sch Comp Studies, Leeds LS2 9JT, W Yorkshire, England
[3] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
D O I
10.1063/1.533194
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the mixing properties of the Swendsen-Wang process for the two-state Potts model or Ising model, on the complete n vertex graph K-n and for the Q-state model on an axn grid where a is bounded as n -->infinity. (C) 2000 American Institute of Physics. [S0022-2488(00)00703-9].
引用
收藏
页码:1499 / 1527
页数:29
相关论文
共 24 条
[1]  
ALDOUS D, UNPUB REVERSIBLE MAR
[2]  
ALON N, 1992, PROBABILISTIC METHOD
[3]  
[Anonymous], 1990, Random Struct. Algorithms, DOI [DOI 10.1002/RSA.3240010305, 10.1002/rsa.3240010305]
[4]   THE EVOLUTION OF RANDOM GRAPHS [J].
BOLLOBAS, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 286 (01) :257-274
[5]  
BORGS C, IN PRESS TORPID MIXI
[6]  
Bubley R., 1997, P 38 ANN S FOCS IEEE
[7]  
COOPER C, IN PRESS P DIMACS WO
[8]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[9]   ON EXISTENCE OF A FACTOR OF DEGREE 1 OF A CONNECTED RANDOM GRAPH [J].
ERDOS, P ;
RENYI, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (3-4) :359-+
[10]  
Feller W., 1957, INTRO PROBABILITY TH, VI