A genetic algorithm to obtain the optimal recurrent neural network

被引:67
作者
Blanco, A [1 ]
Delgado, M [1 ]
Pegalajar, MC [1 ]
机构
[1] Univ Granada, Dept Ciencias Computac & Intelligencia Artificial, ETSI Informat, E-18071 Granada, Spain
关键词
recurrent neural network; grammatical inference; deterministic finite automata; regular grammars; genetic algorithm; optimal recurrent neural network;
D O I
10.1016/S0888-613X(99)00032-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting the optimal topology of a neural network for a particular application is a difficult task. In the case of recurrent neural networks, mast methods only induce topologies in which their neurons are fully connected. In this paper, we present a genetic algorithm capable of obtaining not only the optimal topology of a recurrent neural network but also the least number of connections necessary. Finally, this genetic algorithm is applied to a problem of grammatical inference using neural networks, with very good results. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:67 / 83
页数:17
相关论文
共 37 条
  • [1] ANGLUIN D, 1983, ACM COMPUT SURV, V15, P237
  • [2] [Anonymous], 1989, GENETIC ALGORITHM SE
  • [3] [Anonymous], 1996, UMIACSTR9622
  • [4] [Anonymous], P 1989 INT JOINT C A
  • [5] [Anonymous], P IEEE IJCNN SEATTL
  • [6] [Anonymous], P 2 INT C BIOINF SUP
  • [7] BEASLEY D, 1993, U COMPUT, V15, P58
  • [8] BEASLEY D, 1993, U COMPUT, V15, P170
  • [9] BLANCO M, 1996, P INF PROC MAN UNC K, V3, P1055
  • [10] Finite State Automata and Simple Recurrent Networks
    Cleeremans, Axel
    Servan-Schreiber, David
    McClelland, James L.
    [J]. NEURAL COMPUTATION, 1989, 1 (03) : 372 - 381