Inhibitors of interleukin-1 beta converting enzyme (ICE) and a related group of cysteine aspartases of the ICE/ced-3 family inhibit cell death in a variety of settings, including in PC12 cells and sympathetic neurons following withdrawal of trophic support. To assess the particular member(s) of the ICE/ced-3 family that are relevant to cell death and to position their activation within the apoptotic pathway, we have used specific substrates to measure ICE-like and CPP32-like enzymatic activity in naive and neuronally differentiated PC12 cells that had been deprived of trophic support (nerve growth factor and/or serum). Rapid induction of CPP32-like, but not ICE-like, activity was observed. c-Jun kinase activation and the action of bcl-2 and other survival agents, such as cell cycle blockers, a NO generator, N-acetylcysteine, aurintricarboxylic acid, and actinomycin D occurred at a point further upstream in the apoptotic pathway compared with the aspartase activation. In living cells, zVAD-FRIR, a pseudosubstrate aspartase inhibitor, blocked the activity/activation of the aspartase at concentrations about one order of magnitude lower than those required to promote survival, raising the possibility that the CPP32-like aspartase is not the main death effector in this model.