The mitogen-activated protein kinase pathway can inhibit TRAIL-induced apoptosis by prohibiting association of truncated Bid with mitochondria

被引:15
作者
Ortiz-Ferron, G.
Tait, S. W.
Robledo, G.
de Vries, E.
Borst, J.
Lopez-Rivas, A.
机构
[1] CSIC, Inst Parasitol & Biomed, Granada, Spain
[2] Netherlands Canc Inst, Div Immunol, NL-1066 CX Amsterdam, Netherlands
关键词
apoptosis; TRAIL; death receptor; MAPK; PKC; bid; mitochondria;
D O I
10.1038/sj.cdd.4401875
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Breast cancer cells often show increased activity of the mitogen-activated protein kinase (MAPK) pathway. We report here that this pathway reduces their sensitivity to death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and present the underlying mechanism. Activation of protein kinase C (PKC) inhibited TRAIL-induced apoptosis in a protein synthesis-independent manner. Deliberate activation of MAPK was also inhibitory. In digitonin-permeabilized cells, PKC activation interfered with the capacity of recombinant truncated (t)Bid to release cytochrome c from mitochondria. MAPK activation did not affect TRAIL or tumor necrosis factor (TNF)alpha-induced Bid cleavage. However, it did inhibit translocation of (t) Bid to mitochondria as determined both by subcellular fractionation analysis and confocal microscopy. Steady state tBid mitochondrial localization was prohibited by activation of the MAPK pathway, also when the Bcl-2 homology domain 3 (BH3) domain of tBid was disrupted. We conclude that the MAPK pathway inhibits TRAIL-induced apoptosis in MCF-7 cells by prohibiting anchoring of tBid to the mitochondrial membrane. This anchoring is independent of its interaction with resident Bcl-2 family members.
引用
收藏
页码:1857 / 1865
页数:9
相关论文
共 49 条
[1]   Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage [J].
Agami, R ;
Bernards, R .
CELL, 2000, 102 (01) :55-66
[2]   Safety and antitumor activity of recombinant soluble Apo2 ligand [J].
Ashkenazi, A ;
Pai, RC ;
Fong, S ;
Leung, S ;
Lawrence, DA ;
Masters, SA ;
Blackie, C ;
Chang, L ;
McMurtrey, AE ;
Hebert, A ;
DeForge, L ;
Koumenis, IL ;
Lewis, D ;
Harris, L ;
Bussiere, J ;
Koeppen, H ;
Shahrokh, Z ;
Schwall, RH .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (02) :155-162
[3]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[4]   Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J].
Bonni, A ;
Brunet, A ;
West, AE ;
Datta, SR ;
Takasu, MA ;
Greenberg, ME .
SCIENCE, 1999, 286 (5443) :1358-1362
[5]  
Boucher MJ, 2000, J CELL BIOCHEM, V79, P355, DOI 10.1002/1097-4644(20001201)79:3<355::AID-JCB20>3.0.CO
[6]  
2-0
[7]   Ubiquitin-mediated degradation of the proapoptotic active form of bid - A functional consequence on apoptosis induction [J].
Breitschopf, K ;
Zeiher, AM ;
Dimmeler, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (28) :21648-21652
[8]  
BRUNET A, 1994, ONCOGENE, V9, P3379
[9]   Structural and biochemical basis of apoptotic activation by Smac/DIABLO [J].
Chai, JJ ;
Du, CY ;
Wu, JW ;
Kyin, S ;
Wang, XD ;
Shi, YG .
NATURE, 2000, 406 (6798) :855-862
[10]   The differential sensitivity of Bcl-2-overexpressing human breast tumor cells to TRAIL or doxorubicin-induced apoptosis is dependent on Bcl-2 protein levels [J].
de Almodóvar, CR ;
Ruiz-Ruiz, C ;
Muñoz-Pinedo, C ;
Robledo, GH ;
López-Rivas, A .
ONCOGENE, 2001, 20 (48) :7128-7133