Chemical composition of air masses transported from Asia to the U. S. West Coast during ITCT 2K2:: Fossil fuel combustion versus biomass-burning signatures -: art. no. D23S20

被引:67
作者
de Gouw, JA
Cooper, OR
Warneke, C
Hudson, PK
Fehsenfeld, FC
Holloway, JS
Hübler, G
Nicks, DK
Nowak, JB
Parrish, DD
Ryerson, TB
Atlas, EL
Donnelly, SG
Schauffler, SM
Stroud, V
Johnson, K
Carmichael, GR
Streets, DG
机构
[1] NOAA, Aeron Lab, Boulder, CO 80303 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] Natl Ctr Atmospher Res, Boulder, CO 80305 USA
[4] Univ Iowa, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA
[5] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA
关键词
long-range transport; fossil-fuel combustion; biomass burning;
D O I
10.1029/2003JD004202
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
[1] As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 51 条
[1]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[2]   Anthropogenic sources of halocarbons, sulfur hexafluoride, carbon monoxide, and methane in the southeastern United States [J].
Bakwin, PS ;
Hurst, DF ;
Tans, PP ;
Elkins, JW .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D13) :15915-15925
[3]   NMHCs and halocarbons in Asian continental outflow during the Transport and Chemical Evolution over the Pacific (TRACE-P) Field Campaign: Comparison with PEM-West B [J].
Blake, NJ ;
Blake, DR ;
Simpson, IJ ;
Meinardi, S ;
Swanson, AL ;
Lopez, JP ;
Katzenstein, AS ;
Barletta, B ;
Shirai, T ;
Atlas, E ;
Sachse, G ;
Avery, M ;
Vay, S ;
Fuelberg, HE ;
Kiley, CM ;
Kita, K ;
Rowland, FS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D20)
[4]   Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B [J].
Blake, NJ ;
Blake, DR ;
Chen, TY ;
Collins, JE ;
Sachse, GW ;
Anderson, BE ;
Rowland, FS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D23) :28315-28331
[5]  
BROCK CA, 2004, IN PRESS J GEOPHYS R, V109, pS2326, DOI DOI 10.1029/2003JD004198
[6]   Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels [J].
Christian, TJ ;
Kleiss, B ;
Yokelson, RJ ;
Holzinger, R ;
Crutzen, PJ ;
Hao, WM ;
Saharjo, BH ;
Ward, DE .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D23)
[7]   A case study of transpacific warm conveyor belt transport:: Influence of merging airstreams on trace gas import to North America -: art. no. D23S08 [J].
Cooper, OR ;
Forster, C ;
Parrish, D ;
Trainer, M ;
Dunlea, E ;
Ryerson, T ;
Hübler, G ;
Fehsenfeld, F ;
Nicks, D ;
Holloway, J ;
de Gouw, J ;
Warneke, C ;
Roberts, JM ;
Flocke, F ;
Moody, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2004, 109 (D23) :1-17
[8]   High spatial and temporal resolution measurements of primary organics and their oxidation products over the tropical forests of Surinam [J].
Crutzen, PJ ;
Williams, J ;
Pöschl, U ;
Hoor, P ;
Fischer, H ;
Warneke, C ;
Holzinger, R ;
Hansel, A ;
Lindinger, W ;
Scheeren, B ;
Lelieveld, J .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (08) :1161-1165
[9]   Sensitivity and specificity of atmospheric trace gas detection by proton-transfer-reaction mass spectrometry [J].
de Gouw, J ;
Warneke, C ;
Karl, T ;
Eerdekens, G ;
van der Veen, C ;
Fall, R .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2003, 223 (1-3) :365-382
[10]   Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere -: art. no. 4329 [J].
de Gouw, JA ;
Warneke, C ;
Parrish, DD ;
Holloway, JS ;
Trainer, M ;
Fehsenfeld, FC .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D11)