Bias-corrected maximum likelihood estimation for the beta distribution

被引:16
作者
Cordeiro, GM [1 ]
DaRocha, EC [1 ]
DaRocha, JGC [1 ]
CribariNeto, F [1 ]
机构
[1] SO ILLINOIS UNIV, DEPT ECON, CARBONDALE, IL 62901 USA
关键词
asymptotic approximation; beta distribution; bias correction; maximum likelihood estimation;
D O I
10.1080/00949659708811820
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper gives closed-form expressions for bias-corrected maximum likelihood estimates of the parameters of the beta distribution that can be used to define bias-corrected estimates that are nearly unbiased. Some approximations based on asymptotic expansions for the bias corrections are given. We also present simulation results comparing the performances of the maximum likelihood estimates and corrected ones. The results suggest that bias-corrected estimates have better finite-sample performance than standard maximum likelihood estimates.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 25 条
[1]  
ABELL ML, 1994, MAPLE V HDB
[2]  
Beckman R. J., 1978, Journal of Statistical Computation and Simulation, V7, P253, DOI 10.1080/00949657808810232
[3]   PSI-(DIGAMMA)-FUNCTION [J].
BERNARDO, JM .
THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1976, 25 (03) :315-317
[4]  
BOWMAN K, 1992, J STAT COMPUT SIM, V43, P217
[5]  
BOX MJ, 1971, J ROY STAT SOC B, V33, P171
[6]  
COOK RD, 1986, BIOMETRIKA, V74, P265
[7]  
CORDEIRO GM, 1993, COMMUN STAT THEORY, V22, P169
[8]  
CORDEIRO GM, 1991, J ROY STAT SOC B MET, V53, P629
[9]   BIAS CORRECTION IN ARMA MODELS [J].
CORDEIRO, GM ;
KLEIN, R .
STATISTICS & PROBABILITY LETTERS, 1994, 19 (03) :169-176
[10]   A GENERAL DEFINITION OF RESIDUALS [J].
COX, DR ;
SNELL, EJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1968, 30 (02) :248-&