CNS immune privilege: hiding in plain sight

被引:561
作者
Carson, Monica J.
Doose, Jonathan M.
Melchior, Benoit
Schmid, Christoph D.
Ploix, Corinne C.
机构
[1] Univ Calif Riverside, Div Biomed Sci, Riverside, CA 92521 USA
[2] F Hoffmann La Roche & Co Ltd, CH-4002 Basel, Switzerland
[3] Swiss Inst Bioinformat & Expt Canc Res, Lausanne, Switzerland
关键词
immune privilege; central nervous system; experimental autoimmune encephalitis; immunotherapy; microglia;
D O I
10.1111/j.1600-065X.2006.00441.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Central nervous system (CNS) immune privilege is an experimentally defined phenomenon. Tissues that are rapidly rejected by the immune system when grafted in sites, such as the skin, show prolonged survival when grafted into the CNS. Initially, CNS immune privilege was construed as CNS isolation from the immune system by the blood-brain barrier (BBB), the lack of draining lymphatics, and the apparent immunoincompetence of microglia, the resident CNS macrophage. CNS autoimmunity and neurodegeneration were presumed automatic consequences of immune cell encounter with CNS antigens. Recent data have dramatically altered this viewpoint by revealing that the CNS is neither isolated nor passive in its interactions with the immune system. Peripheral immune cells can cross the intact BBB, CNS neurons and glia actively regulate macrophage and lymphocyte responses, and microglia are immunocompetent but differ from other macrophage/dendritic cells in their ability to direct neuroprotective lymphocyte responses. This newer view of CNS immune privilege is opening the door for therapies designed to harness autoreactive lymphocyte responses and also implies (i) that CNS autoimmune diseases (i.e. multiple sclerosis) may result as much from neuronal and/or glial dysfunction as from immune system dysfunctions and (ii) that the severe neuronal and glial dysfunction associated with neurodegenerative disorders (i.e. Alzheimer's disease) likely alters CNS-specific regulation of lymphocyte responses affecting the utility of immune-based therapies (i.e. vaccines).
引用
收藏
页码:48 / 65
页数:18
相关论文
共 137 条
[1]   Astrocyte-endothelial interactions at the blood-brain barrier [J].
Abbott, NJ ;
Rönnbäck, L ;
Hansson, E .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (01) :41-53
[2]   Dynamics of CNS barriers: Evolution, differentiation, and modulation [J].
Abbott, NJ .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2005, 25 (01) :5-23
[3]  
Alt C, 2002, EUR J IMMUNOL, V32, P2133, DOI 10.1002/1521-4141(200208)32:8<2133::AID-IMMU2133>3.0.CO
[4]  
2-W
[5]  
Anthony D C, 1999, Expert Opin Investig Drugs, V8, P363, DOI 10.1517/13543784.8.4.363
[6]   IDENTIFICATION OF THE 64K AUTOANTIGEN IN INSULIN-DEPENDENT DIABETES AS THE GABA-SYNTHESIZING ENZYME GLUTAMIC-ACID DECARBOXYLASE [J].
BAEKKESKOV, S ;
AANSTOOT, HJ ;
CHRISTGAU, S ;
REETZ, A ;
SOLIMENA, M ;
CASCALHO, M ;
FOLLI, F ;
RICHTEROLESEN, H ;
CAMILLI, PD .
NATURE, 1990, 347 (6289) :151-156
[7]  
Balabanov R, 1998, J NEUROSCI RES, V53, P637, DOI 10.1002/(SICI)1097-4547(19980915)53:6<637::AID-JNR1>3.0.CO
[8]  
2-6
[9]  
BARKER CF, 1977, ADV IMMUNOL, V25, P1
[10]  
Becher B, 2000, GLIA, V29, P293