Myelin-associated glycoprotein inhibits microtubule assembly by a rho-kinase-dependent mechanism

被引:125
作者
Mimura, Fumiaki
Yamagishi, Satoru
Arimura, Nariko
Fujitani, Masashi
Kubo, Takekazu
Kaibuchi, Kozo
Yamashita, Toshihide
机构
[1] Chiba Univ, Grad Sch Med, Dept Neurobiol, Chuo Ku, Chiba 2608670, Japan
[2] Chiba Univ, Grad Sch Med, Dept Anesthesiol, Chuo Ku, Chiba 2608670, Japan
[3] Nagoya Univ, Grad Sch Med, Dept Cell Pharmacol, Showa Ku, Nagoya, Aichi 4668550, Japan
关键词
D O I
10.1074/jbc.M510934200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The over-expression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors.
引用
收藏
页码:15970 / 15979
页数:10
相关论文
共 39 条
[1]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[2]   Phosphorylation of collapsin response mediator protein-2 by Rho-kinase -: Evidence for two separate signaling pathways for growth cone collapse [J].
Arimura, N ;
Inagaki, N ;
Chihara, K ;
Ménager, C ;
Nakamura, N ;
Amano, M ;
Iwamatsu, A ;
Goshima, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) :23973-23980
[3]   Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones [J].
Arimura, N ;
Ménager, C ;
Kawano, Y ;
Yoshimura, T ;
Kawabata, S ;
Hattori, A ;
Fukata, Y ;
Amano, M ;
Goshima, Y ;
Inagaki, M ;
Morone, N ;
Usukura, J ;
Kaibuchi, K .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (22) :9973-9984
[4]   Role of CRMP-2 in neuronal polarity [J].
Arimura, N ;
Menager, C ;
Fukata, Y ;
Kaibuchi, K .
JOURNAL OF NEUROBIOLOGY, 2004, 58 (01) :34-47
[5]  
Baas Peter W., 2001, Neuron, V32, P981, DOI 10.1016/S0896-6273(01)00556-6
[6]   Proteins of the ADF/cofilin family: Essential regulators of actin dynamics [J].
Bamburg, JR .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :185-230
[7]   Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules [J].
Belmont, LD ;
Mitchison, TJ .
CELL, 1996, 84 (04) :623-631
[8]   The role of local actin instability in axon formation [J].
Bradke, F ;
Dotti, CG .
SCIENCE, 1999, 283 (5409) :1931-1934
[9]   NEWLY ASSEMBLED MICROTUBULES ARE CONCENTRATED IN THE PROXIMAL AND DISTAL REGIONS OF GROWING AXONS [J].
BROWN, A ;
SLAUGHTER, T ;
BLACK, MM .
JOURNAL OF CELL BIOLOGY, 1992, 119 (04) :867-882
[10]  
Challacombe JF, 1997, J NEUROSCI, V17, P3085