Growing self-organizing networks - history, status quo, and perspectives

被引:5
作者
Fritzke, B [1 ]
机构
[1] Tech Univ Dresden, Comp Sci Div, Inst Artificial Intelligence, D-01062 Dresden, Germany
来源
KOHONEN MAPS | 1999年
关键词
D O I
10.1016/B978-044450270-4/50010-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An overview of the (rather recent) history of growing self-organizing networks is given. Starting from Kohonen's original work on the self-organizing map various modifications and new developments are motivated and illustrated. Current applications are presented and possible directions for future research.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 29 条
[1]  
BECKER M, 1999, IN PRESS AUTONOMOUS
[2]  
BERLICH R, 1996, 5 ART INT HIGH EN PH
[3]  
BOHN CA, 1996, RENDERING TECHNIQUES
[4]   DYNAMIC CELL STRUCTURE LEARNS PERFECTLY TOPOLOGY PRESERVING MAP [J].
BRUSKE, J ;
SOMMER, G .
NEURAL COMPUTATION, 1995, 7 (04) :845-865
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   SELF-ORGANIZING MAPS - ORDERING, CONVERGENCE PROPERTIES AND ENERGY FUNCTIONS [J].
ERWIN, E ;
OBERMAYER, K ;
SCHULTEN, K .
BIOLOGICAL CYBERNETICS, 1992, 67 (01) :47-55
[7]   GROWING CELL STRUCTURES - A SELF-ORGANIZING NETWORK FOR UNSUPERVISED AND SUPERVISED LEARNING [J].
FRITZKE, B .
NEURAL NETWORKS, 1994, 7 (09) :1441-1460
[8]   FAST LEARNING WITH INCREMENTAL RBF NETWORKS [J].
FRITZKE, B .
NEURAL PROCESSING LETTERS, 1994, 1 (01) :2-5
[9]  
Fritzke B., 1995, ICANN '95. International Conference on Artificial Neural Networks. Neuronimes '95 Scientific Conference, P217
[10]   The LBG-U method for vector quantization - An improvement over LEG inspired from neural networks [J].
Fritzke, B .
NEURAL PROCESSING LETTERS, 1997, 5 (01) :35-45