Structural basis of chemokine receptor function - A model for binding affinity and ligand selectivity

被引:118
作者
Rajagopalan, Lavanya
Rajarathnam, Krishna [1 ]
机构
[1] Univ Texas, Dept Biochem & Mol Biol, Med Branch, Galveston, TX 77555 USA
[2] Univ Texas, Sealy Ctr Struct Biol, Med Branch, Galveston, TX 77555 USA
关键词
chemokine; chemokine receptor; GPCR; binding affinity; selectivity; receptor activation structure-function; N-terminal domain;
D O I
10.1007/s10540-006-9025-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chemokine receptors play fundamental roles in human physiology from embryogenesis to inflammatory response. The receptors belong to the G-protein coupled receptor class, and are activated by chemokine ligands with a range of specificities and affinities that result in a complicated network of interactions. The molecular basis for function is largely a black box, and can be directly attributed to the lack of structural information on the receptors. Studies to date indicate that function can be best described by a two-site model, that involves interactions between the receptor N-domain and ligand N-terminal loop residues (site-I), and between receptor extracellular loop and the ligand N-terminal residues (site-II). In this review, we describe how the two-site model could modulate binding affinity and ligand selectivity, and also highlight some of the unique chemokine receptor features, and their role in function.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 103 条
[1]   The CXC chemokines growth-regulated oncogene (GRO) alpha, GRO beta, GRO gamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor [J].
Ahuja, SK ;
Murphy, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20545-20550
[2]   CXC chemokines bind to unique sets of selectivity determinants that can function independently and are broadly distributed on multiple domains of human interleukin-8 receptor B - Determinants of high affinity binding and receptor activitation are distinct [J].
Ahuja, SK ;
Lee, JC ;
Murphy, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (01) :225-232
[3]   Viral mimicry of cytokines, chemokines and their receptors [J].
Alcami, A .
NATURE REVIEWS IMMUNOLOGY, 2003, 3 (01) :36-50
[4]   STRUCTURE AND FUNCTION OF RECEPTORS COUPLED TO G-PROTEINS [J].
BALDWIN, JM .
CURRENT OPINION IN CELL BIOLOGY, 1994, 6 (02) :180-190
[5]   Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium [J].
Baltus, T ;
Weber, KSC ;
Johnson, Z ;
Proudfoot, AEI ;
Weber, C .
BLOOD, 2003, 102 (06) :1985-1988
[6]  
Baly DL, 1998, J IMMUNOL, V161, P4944
[7]   Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease [J].
Berger, EA ;
Murphy, PM ;
Farber, JM .
ANNUAL REVIEW OF IMMUNOLOGY, 1999, 17 :657-700
[8]   The core domain of chemokines binds CCR5 extracellular domains while their amino terminus interacts with the transmembrane helix bundle [J].
Blanpain, C ;
Doranz, BJ ;
Bondue, A ;
Govaerts, C ;
De Leener, A ;
Vassart, G ;
Doms, RW ;
Proudfoot, A ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (07) :5179-5187
[9]   Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity [J].
Blanpain, C ;
Lee, B ;
Vakili, J ;
Doranz, BJ ;
Govaerts, C ;
Migeotte, I ;
Sharron, M ;
Dupriez, V ;
Vassart, G ;
Doms, RW ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (27) :18902-18908
[10]   Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein [J].
Blanpain, C ;
Doranz, BJ ;
Vakili, J ;
Rucker, J ;
Govaerts, C ;
Baik, SSW ;
Lorthioir, O ;
Migeotte, I ;
Libert, F ;
Baleux, F ;
Vassart, G ;
Doms, RW ;
Parmentier, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :34719-34727