Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis

被引:316
作者
Drummond, Micah J.
Fry, Christopher S.
Glynn, Erin L.
Dreyer, Hans C.
Dhanani, Shaheen [2 ,3 ]
Timmerman, Kyle L. [2 ,3 ]
Volpi, Elena [2 ,3 ]
Rasmussen, Blake B. [1 ,3 ]
机构
[1] Univ Texas Galveston, Med Branch, Dept Phys Therapy, Div Rehabil Sci, Galveston, TX 77555 USA
[2] Univ Texas Galveston, Med Branch, Dept Internal Med, Galveston, TX 77555 USA
[3] Univ Texas Galveston, Med Branch, Sealy Ctr Aging, Galveston, TX 77555 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2009年 / 587卷 / 07期
关键词
MESSENGER-RNA TRANSLATION; RESISTANCE EXERCISE; MAMMALIAN TARGET; 4E-BP1; PHOSPHORYLATION; S6; SENSITIVE PATHWAY; KINASE PATHWAY; AMINO-ACIDS; CELL-SIZE; MTOR;
D O I
10.1113/jphysiol.2008.163816
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Muscle protein synthesis and mTORC1 signalling are concurrently stimulated following muscle contraction in humans. In an effort to determine whether mTORC1 signalling is essential for regulating muscle protein synthesis in humans, we treated subjects with a potent mTORC1 inhibitor (rapamycin) prior to performing a series of high-intensity muscle contractions. Here we show that rapamycin treatment blocks the early (1-2 h) acute contraction-induced increase (similar to 40%) in human muscle protein synthesis. In addition, several downstream components of the mTORC1 signalling pathway were also blunted or blocked by rapamycin. For instance, S6K1 phosphorylation (Thr421/Ser424) was increased post-exercise 6-fold in the control group while being unchanged with rapamycin treatment. Furthermore, eEF2 phosphorylation (Thr56) was reduced by similar to 25% post-exercise in the control group but phosphorylation following rapamycin treatment was unaltered, indicating that translation elongation was inhibited. Rapamycin administration prior to exercise also reduced the ability of raptor to associate with mTORC1 during post-exercise recovery. Surprisingly, rapamycin treatment prior to resistance exercise completely blocked the contraction-induced increase in the phosphorylation of ERK1/2 (Thr202/Tyr204) and blunted the increase in MNK1 (Thr197/202) phosphorylation. However, the phosphorylation of a known target of MNK1, eIF4E (Ser208), was similar in both groups (P > 0.05) which is consistent with the notion that rapamycin does not directly inhibit MAPK signalling. We conclude that mTORC1 signalling is, in part, playing a key role in regulating the contraction-induced stimulation of muscle protein synthesis in humans, while dual activation of mTORC1 and ERK1/2 stimulation may be required for full stimulation of human skeletal muscle protein synthesis.
引用
收藏
页码:1535 / 1546
页数:12
相关论文
共 44 条
  • [1] Anthony JC, 2000, J NUTR, V130, P2413
  • [2] The selectivity of protein kinase inhibitors: a further update
    Bain, Jenny
    Plater, Lorna
    Elliott, Matt
    Shpiro, Natalia
    Hastie, C. James
    Mclauchlan, Hilary
    Klevernic, Iva
    Arthur, J. Simon C.
    Alessi, Dario R.
    Cohen, Philip
    [J]. BIOCHEMICAL JOURNAL, 2007, 408 : 297 - 315
  • [3] Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
    Bodine, SC
    Stitt, TN
    Gonzalez, M
    Kline, WO
    Stover, GL
    Bauerlein, R
    Zlotchenko, E
    Scrimgeour, A
    Lawrence, JC
    Glass, DJ
    Yancopoulos, GD
    [J]. NATURE CELL BIOLOGY, 2001, 3 (11) : 1014 - 1019
  • [4] Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle
    Bolster, DR
    Kubica, N
    Crozier, SJ
    Williamson, DL
    Farrell, PA
    Kimball, SR
    Jefferson, LS
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2003, 553 (01): : 213 - 220
  • [5] Regulation of peptide-chain elongation in mammalian cells
    Browne, GJ
    Proud, CG
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (22): : 5360 - 5368
  • [6] THE DETERMINATION OF LOW D(5)-PHENYLALANINE ENRICHMENT (0.002-0.09 ATOM PERCENT EXCESS), AFTER CONVERSION TO PHENYLETHYLAMINE, IN RELATION TO PROTEIN-TURNOVER STUDIES BY GAS-CHROMATOGRAPHY ELECTRON IONIZATION MASS-SPECTROMETRY
    CALDER, AG
    ANDERSON, SE
    GRANT, I
    MCNURLAN, MA
    GARLICK, PJ
    [J]. RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1992, 6 (07) : 421 - 424
  • [7] RAPAMYCIN FKBP SPECIFICALLY BLOCKS GROWTH-DEPENDENT ACTIVATION OF AND SIGNALING BY THE 70 KD S6 PROTEIN-KINASES
    CHUNG, J
    KUO, CJ
    CRABTREE, GR
    BLENIS, J
    [J]. CELL, 1992, 69 (07) : 1227 - 1236
  • [8] Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise
    Cuthbertson, DJ
    Babraj, J
    Smith, K
    Wilkes, E
    Fedele, MJ
    Esser, K
    Rennie, M
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2006, 290 (04): : E731 - E738
  • [9] Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle
    Dreyer, Hans C.
    Drummond, Micah J.
    Pennings, Bart
    Fujita, Satoshi
    Glynn, Erin L.
    Chinkes, David L.
    Dhanani, Shaheen
    Volpi, Elena
    Rasmussen, Blake B.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2008, 294 (02): : E392 - E400
  • [10] Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle
    Dreyer, Hans C.
    Fujita, Satoshi
    Cadenas, Jerson G.
    Chinkes, David L.
    Volpi, Elena
    Rasmussen, Blake B.
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2006, 576 (02): : 613 - 624