Fragment molecular orbital calculations on large scale systems containing heavy metal atom

被引:44
作者
Ishikawa, Takeshi
Mochizuki, Yuji
Nakano, Tatsuya
Amari, Shinji
Mori, Hirotoshi
Honda, Hiroaki
Fujita, Takatoshi
Tokiwa, Hiroaki
Tanaka, Shigenori
Komeiji, Yuto
Fukuzawa, Kaori
Tanaka, Kiyoshi
Miyoshi, Eisaku
机构
[1] Rikkyo Univ, Dept Chem, Fac Sci, Toshima Ku, Tokyo 1718501, Japan
[2] Japan Sci & Technol Agcy, CREST Project, Kawaguchi, Saitama 3320012, Japan
[3] Univ Tokyo, AdvanceSoft, Ctr Collaborat Res, Meguro Ku, Tokyo 1538904, Japan
[4] Univ Tokyo, Inst Ind Sci, Meguro Ku, Tokyo 1538904, Japan
[5] Natl Inst Hlth Sci, Div Saferty Informat Drug Food & Chem, Setagaya Ku, Tokyo 1588501, Japan
[6] Kyushu Univ, Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
[7] Kobe Univ, Grad Sch Sci & Technol, Nada Ku, Kobe, Hyogo 6578501, Japan
[8] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
[9] Mizuho Informat & Res Inst Inc, Chiyoda Ku, Tokyo 1018443, Japan
基金
日本科学技术振兴机构;
关键词
D O I
10.1016/j.cplett.2006.06.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have realized a fully quantum mechanical treatment of large scale systems containing heavy metal atom, by introducing the model core potential (MCP) technique into the fragment molecular orbital (FMO) scheme. The scalar relativistic effects are incorporated by the use of MCP. This FMO/MCP method was applied to the divalent mercury ion hydrated, with 256 water molecules at the second-order Moller-Plesset (MP2) perturbation level. The complex between cisplatin and DNA was also calculated with MP2, where about a thousand of water molecules and dozens of sodium ions were employed for the explicit treatment of hydration. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 36 条
[1]   VISCANA: Visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening [J].
Amari, S ;
Aizawa, M ;
Zhang, JW ;
Fukuzawa, K ;
Mochizuki, Y ;
Iwasawa, Y ;
Nakata, K ;
Chuman, H ;
Nakano, T .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (01) :221-230
[2]  
[Anonymous], PROTEIN DATA BANK
[4]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[5]   How strong can the bend be on a DNA helix from cisplatin? DFT and MP2 quantum chemical calculations of cisplatin-bridged DNA purine bases [J].
Burda, JV ;
Leszczynski, J .
INORGANIC CHEMISTRY, 2003, 42 (22) :7162-7172
[6]   Description of ordered solvent molecules in a platinated decanucleotide duplex refined at 1.6 Å resolution against experimental MAD phases [J].
Coste, F ;
Shepard, W ;
Zelwer, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :431-440
[7]   APPROXIMATE RELATIVISTIC CORRECTIONS TO ATOMIC RADIAL WAVE-FUNCTIONS [J].
COWAN, RD ;
GRIFFIN, DC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (10) :1010-1014
[8]   QUANTUM ELECTRODYNAMICAL CORRECTIONS TO FINE-STRUCTURE OF HELIUM [J].
DOUGLAS, M ;
KROLL, NM .
ANNALS OF PHYSICS, 1974, 82 (01) :89-155
[9]   ACCURATE MODELING OF THE INTRAMOLECULAR ELECTROSTATIC ENERGY OF PROTEINS [J].
DUDEK, MJ ;
PONDER, JW .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (07) :791-816
[10]   A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) [J].
Fedorov, DG ;
Olson, RM ;
Kitaura, K ;
Gordon, MS ;
Koseki, S .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (06) :872-880