A three-dimensional PEM fuel cell model with consistent treatment of water transport in MEA

被引:76
作者
Meng, Hua [1 ]
机构
[1] Zhejiang Univ, Ctr Engn & Sci Computat, Coll Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
PEM fuel cell; mixed-domain method; interfacial boundary condition; net water transfer coefficient; water content;
D O I
10.1016/j.jpowsour.2006.07.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a three-dimensional PEM fuel cell model with a consistent water transport treatment in the membrane electrode assembly (MEA) has been developed. In this new PEM fuel cell model, the conservation equation of the water concentration is solved in the gas channels, gas diffusion layers, and catalyst layers while a conservation equation of the water content is established in the membrane. These two equations are connected using a set of internal boundary conditions based on the thermodynamic phase equilibrium and flux equality at the interface of the membrane and the catalyst layer. The existing fictitious water concentration treatment, which assumes thermodynamic phase equilibrium between the water content in the membrane phase and the water concentration, is applied in the two catalyst layers to consider water transport in the membrane phase. Since all the other conservation equations are still developed and solved in the single-domain framework without resort to interfacial boundary conditions, the present new PEM fuel cell model is termed as a mixed-domain method. Results from this mixed-domain approach have been compared extensively with those from the single-domain method, showing good accuracy in terms of not only cell performances and current distributions but also water content variations in the membrane. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:426 / 435
页数:10
相关论文
共 23 条
[1]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[2]  
Callen HB., 1985, THERMODYNAMICS INTRO, V2, DOI 10.1119/1.19071
[3]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[4]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[5]   A single-phase, non-isothermal model for PEM fuel cells [J].
Ju, H ;
Meng, H ;
Wang, CY .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (07) :1303-1315
[6]   Experimental validation of a PEM fuel cell model by current distribution data [J].
Ju, H ;
Wang, CY .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1954-A1960
[7]   Nonisothermal modeling of polymer electrolyte fuel cells - I. Experimental validation [J].
Ju, HC ;
Wang, CY ;
Cleghorn, S ;
Beuscher, U .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (08) :A1645-A1653
[8]   Quasi-3D modeling of water transport in polymer electrolyte fuel cells [J].
Kulikovsky, AA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1432-A1439
[9]  
Mazumder S, 2003, J ELECTROCHEM SOC, V150, pA1503, DOI 10.1149/1.1615608
[10]   Rigorous 3-d mathematical modeling of PEM fuel cells - II. Model predictions with liquid water transport [J].
Mazumder, S ;
Cole, JV .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1510-A1517