The regulation of self-renewal in human embryonic stem cells

被引:57
作者
Avery, Stuart [1 ]
Inniss, Katie [1 ]
Moore, Harry [1 ]
机构
[1] Univ Sheffield, Ctr Stem Cell Biol, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England
关键词
D O I
10.1089/scd.2006.15.729
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human embryonic stem (hES) cells have the ability to self-renew while maintaining their pluripotency. The ability of stem cells to self-renew expansively is essential in both development and maintenance of adult tissues. ES cell lines were first generated from mouse blastocysts, these lines provided much needed information regarding ES cell propagation, growth factor dependence, and marker expression. However, the application potential of murine models is restricted in value because many differences between mouse and human ES cells have since been identified. The process of hES cells self-renewal appears to be regulated by many different pathways; however, the molecular mechanisms enabling this process are not fully characterized. Further defining these mechanisms will enable growth of hES cells under defined conditions and aid controlled differentiation of cells into specified lineages, in turn providing cells suitable for therapeutic applications. This review provides a summary of the mechanisms known to control self-renewal and pluripotency in hES cells.
引用
收藏
页码:729 / 740
页数:12
相关论文
共 108 条
[1]   Feeder layer- and serum-free culture of human embryonic stem cells [J].
Amit, M ;
Shariki, C ;
Margulets, V ;
Itskovitz-Eldor, J .
BIOLOGY OF REPRODUCTION, 2004, 70 (03) :837-845
[2]   The Src family of tyrosine kinases is important for embryonic stem cell self-renewal [J].
Annerén, C ;
Cowan, CA ;
Melton, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (30) :31590-31598
[3]   A role for the Wnt gene family in hematopoiesis: Expansion of multilineage progenitor cells [J].
Austin, TW ;
Solar, GP ;
Ziegler, FC ;
Liem, L ;
Matthews, W .
BLOOD, 1997, 89 (10) :3624-3635
[4]   Synergy of SF1 and RAR in activation of Oct-3/4 promoter [J].
Barnea, E ;
Bergman, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (09) :6608-6619
[5]   Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers [J].
Beattie, GM ;
Lopez, AD ;
Bucay, N ;
Hinton, A ;
Firpo, MT ;
King, CC ;
Hayek, A .
STEM CELLS, 2005, 23 (04) :489-495
[6]  
BENSHUSHAN E, 1995, MOL CELL BIOL, V15, P1034
[7]   Expression of nodal, lefty-A, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3 [J].
Besser, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :45076-45084
[8]   Gene expression in human embryonic stem cell lines: unique molecular signature [J].
Bhattacharya, B ;
Miura, T ;
Brandenberger, R ;
Mejido, J ;
Luo, YQ ;
Yang, AX ;
Joshi, BH ;
Ginis, I ;
Thies, RS ;
Amit, M ;
Lyons, I ;
Condie, BG ;
Itskovitz-Eldor, J ;
Rao, MS ;
Puri, RK .
BLOOD, 2004, 103 (08) :2956-2964
[9]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[10]   Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation [J].
Brandenberger, R ;
Wei, H ;
Zhang, S ;
Lei, S ;
Murage, J ;
Fisk, GJ ;
Li, Y ;
Xu, CH ;
Fang, R ;
Guegler, K ;
Rao, MS ;
Mandalam, R ;
Lebkowski, J ;
Stanton, LW .
NATURE BIOTECHNOLOGY, 2004, 22 (06) :707-716