Hamiltonian structures for the generalized dispersionless KdV hierarchy

被引:12
作者
Brunelli, JC
机构
[1] Univ. Federal de Santa Catarina, Departamento de Física - CFM, Camp. Universitario - Trindade, CEP 88040-900 Florianopolis, SC
关键词
AFFINE LIE-ALGEBRAS; LAX EQUATIONS; SYSTEMS; REDUCTION; WAVES; LIMIT;
D O I
10.1142/S0129055X96000378
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study from a Hamiltonian point of view the generalized dispersionless KdV hierarchy of equations. From the so-called dispersionless Lax representation of these equations we obtain three compatible Hamiltonian structures. The second and third Hamiltonian structures are calculated directly from the r-matrix approach. Since the third structure is not related recursively with the first two the generalized dispersionless KdV hierarchy can be characterized as a truly tri-Hamiltonian system.
引用
收藏
页码:1041 / 1053
页数:13
相关论文
共 37 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]  
[Anonymous], 1974, LINEAR NONLINEAR WAV
[3]  
[Anonymous], SOV MATH DOKL
[4]  
BENNEY DJ, 1973, STUD APPL MATH, V52, P45
[5]   GELFAND-DIKII BRACKETS FOR NONSTANDARD LAX EQUATIONS [J].
BRUNELLI, JC ;
DAS, A ;
HUANG, WJ .
MODERN PHYSICS LETTERS A, 1994, 9 (23) :2147-2155
[6]   PROPERTIES OF AN ALTERNATE LAX DESCRIPTION OF THE KDV HIERARCHY [J].
BRUNELLI, JC ;
DAS, A .
MODERN PHYSICS LETTERS A, 1995, 10 (12) :931-939
[7]   THE CLASSICAL SHALLOW-WATER EQUATIONS - SYMPLECTIC-GEOMETRY [J].
CAVALCANTE, J ;
MCKEAN, HP .
PHYSICA D, 1982, 4 (02) :253-260
[8]   INTEGRABILITY OF NON-LINEAR HAMILTONIAN-SYSTEMS BY INVERSE SCATTERING METHOD [J].
CHEN, HH ;
LEE, YC ;
LIU, CS .
PHYSICA SCRIPTA, 1979, 20 (3-4) :490-492
[9]   THE HAMILTONIAN STRUCTURES ASSOCIATED WITH A GENERALIZED LAX OPERATOR [J].
DAS, A ;
HUANG, WJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2487-2497
[10]  
Das A., 1989, Integrable models