The role of Par proteins in the active segregation of the P1 plasmid

被引:34
作者
Li, YG [1 ]
Dabrazhynetskaya, A [1 ]
Youngren, B [1 ]
Austin, S [1 ]
机构
[1] NCI, Gene Regulat & Chromosome Biol Lab, CCR, Frederick, MD 21702 USA
关键词
D O I
10.1111/j.1365-2958.2004.04111.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The parS centromere-like site promotes active P1 plasmid segregation in the presence of P1 ParA and ParB proteins. At the modest growth rate used here, time-lapse and still photomicroscopy shows that the plasmid copies are clustered as a focus at the Escherichia coli cell centre. Just before cell division, the focus is actively divided and ejects bidirectionally into opposite halves of the dividing cell. In the absence of the wild-type parS binding protein ParB, a focus was formed, but generally did not go to the cell centre. The randomly placed focus did not divide and was inherited by one daughter cell only. In the absence of ParA, foci formed and frequently fixed to the cell centre. However, they failed to divide or eject and were left at the new cell pole of one cell at division. Thus, ParB appears to be required for recognition of the plasmid and its attachment to the cell centre, and ParA is required for focus division and energetic ejection from the cell centre. The ATPase active site mutation, parAK122E, blocked ejection. Mutant parAM314I ejected weakly, and the daughter foci took two generations to reach a new cell centre. This explains the novel alternation of segregation and missegregation in successive generations seen in time-lapse images of this mutant.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 25 条
[1]   PARTITION OF UNIT-COPY MINIPLASMIDS TO DAUGHTER CELLS .3. THE DNA-SEQUENCE AND FUNCTIONAL-ORGANIZATION OF THE P1-PARTITION REGION [J].
ABELES, AL ;
FRIEDMAN, SA ;
AUSTIN, SJ .
JOURNAL OF MOLECULAR BIOLOGY, 1985, 185 (02) :261-272
[2]   RANDOM DIFFUSION CAN ACCOUNT FOR TOPA-DEPENDENT SUPPRESSION OF PARTITION DEFECTS IN LOW-COPY-NUMBER PLASMIDS [J].
AUSTIN, SJ ;
EICHORN, BG .
JOURNAL OF BACTERIOLOGY, 1992, 174 (16) :5190-5195
[3]   Stoichiometry of P1 plasmid partition complexes [J].
Bouet, JY ;
Surtees, JA ;
Funnell, BE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :8213-8219
[4]   Towards single-copy gene expression systems making gene cloning physiologically relevant:: Lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system [J].
Boyd, D ;
Weiss, DS ;
Chen, JC ;
Beckwith, J .
JOURNAL OF BACTERIOLOGY, 2000, 182 (03) :842-847
[5]   DNA REPLICATION AND DIVISION CYCLE IN ESCHERICHIA COLI [J].
CLARK, DJ ;
MAALOE, O .
JOURNAL OF MOLECULAR BIOLOGY, 1967, 23 (01) :99-&
[6]   SPECIFICITY SWITCHING OF THE P1 PLASMID CENTROMERE-LIKE SITE [J].
DAVIS, MA ;
MARTIN, KA ;
AUSTIN, SJ .
EMBO JOURNAL, 1990, 9 (04) :991-998
[7]   The P1 ParA protein and its ATPase activity play a direct role in the segregation of plasmid copies to daughter cells [J].
Davis, MA ;
Radnedge, L ;
Martin, KA ;
Hayes, F ;
Youngren, B ;
Austin, SJ .
MOLECULAR MICROBIOLOGY, 1996, 21 (05) :1029-1036
[8]   BIOCHEMICAL ACTIVITIES OF THE PARA PARTITION PROTEIN OF THE P1 PLASMID [J].
DAVIS, MA ;
MARTIN, KA ;
AUSTIN, SJ .
MOLECULAR MICROBIOLOGY, 1992, 6 (09) :1141-1147
[9]   Intracellular localization of P1 ParB protein depends on ParA and parS [J].
Erdmann, N ;
Petroff, T ;
Funnell, BE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14905-14910
[10]   THE P1 PLASMID-PARTITION SYSTEM SYNTHESIZES 2 ESSENTIAL PROTEINS FROM AN AUTOREGULATED OPERON [J].
FRIEDMAN, SA ;
AUSTIN, SJ .
PLASMID, 1988, 19 (02) :103-112