Adaptive variation in energy acquisition and allocation among latitudinal populations of the Atlantic silverside

被引:129
作者
Billerbeck, JM [1 ]
Schultz, ET
Conover, DO
机构
[1] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA
[2] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA
[3] SUNY Stony Brook, Marine Sci Res Ctr, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
countergradient variation; fish; growth; life history; energetics;
D O I
10.1007/PL00008848
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Understanding the evolution of growth rate requires knowledge of the physiology of growth. This study explored the physiological basis of countergradient variation (CnGV) in somatic growth across latitudinal populations of the Atlantic silverside, Menidia menidia. Energetics of northern (Nova Scotia, Canada) and southern (South Carolina, USA) genotypes were compared across resource levels, temperatures, and fish sizes to identify trade-offs to rapid growth. Offered unlimited resources, genotypes differed in both energy acquisition and allocation. Food consumption, growth, and efficiency of northern genotypes were consistently higher than in southern genotypes, across temperatures and body sizes. Feeding metabolism (specific dynamic action; SDA) was proportional to meal size, differing between genotypes to the extent that food consumption differed. Given limited resources, northern and southern genotypes displayed similar growth, efficiency, routine activity, and SDA across temperatures and fish sizes. Routine metabolism was equal at 17 degrees C and 22 degrees C, yet was significantly higher in northern fish at 28 degrees C. Growth rates in M. menidia do not appear to trade off across environments or body sizes, i.e,, at no temperature, ration, or size do southern fish outgrow northern conspecifics. Nor does submaximal growth result from increased costs of maintenance, tissue synthesis, or routine activity. Based on our findings, we propose that CnGV consumption and growth in M. menidia likely result from trade-offs with other energetic components, namely sustained and burst swimming.
引用
收藏
页码:210 / 219
页数:10
相关论文
共 59 条