Bounds on packings of spheres in the Grassmann manifold

被引:131
作者
Barg, A
Yu, D
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] IPPI, RAN, Moscow 101447, Russia
基金
俄罗斯基础研究基金会;
关键词
invariant measure; minimum distance; principal angles; volume bounds;
D O I
10.1109/TIT.2002.801469
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We derive the Gilbert-Varshamov and Hamming bounds for packings of spheres (codes) in the Grassmann manifolds over R and C. Asymptotic expressions are obtained for the geodesic metric and projection Frobenius (chordal) metric on the manifold.
引用
收藏
页码:2450 / 2454
页数:5
相关论文
共 16 条
[1]   Multiple-antenna signal constellations for fading channels [J].
Agrawal, D ;
Richardson, TJ ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (06) :2618-2626
[2]  
Conway J. H., 1996, EXP MATH, V5, P139
[3]  
DEBRUIJN NG, 1958, ASYMPTOTIC METHODS A
[4]   The geometry of algorithms with orthogonality constraints [J].
Edelman, A ;
Arias, TA ;
Smith, ST .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :303-353
[5]  
Fedoryuk M.V., 1987, ASIMPTOTIKA INTEGRAL
[6]  
GRIKO VL, 1998, INTRO STAT ANAL RAND
[7]   Space-time autocoding [J].
Hochwald, BM ;
Marzetta, TL ;
Hassibi, B .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2761-2781
[8]   NORMAL MULTIVARIATE ANALYSIS AND THE ORTHOGONAL GROUP [J].
JAMES, AT .
ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (01) :40-75
[9]  
Klain Daniel A., 1997, INTRO GEOMETRIC PROB
[10]  
Roy SN, 1947, SANKHYA, V8, P177