The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds

被引:232
作者
Martelli, Dario [1 ]
Sparks, James
Yau, Shing-Tung
机构
[1] CERN, Div Theory, Dept Phys, CH-1211 Geneva 23, Switzerland
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-006-0087-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the Reeb vector, and hence in particular the volume, of a Sasaki-Einstein metric on the base of a toric Calabi-Yau cone of complex dimension n may be computed by minimising a function Z on R-n which depends only on the toric data that defines the singularity. In this way one can extract certain geometric information for a toric Sasaki-Einstein manifold without finding the metric explicitly. For complex dimension n = 3 the Reeb vector and the volume correspond to the R-symmetry and the a central charge of the AdS/CFT dual superconformal field theory, respectively. We therefore interpret this extremal problem as the geometric dual of a-maximisation. We illustrate our results with some examples, including the Y-p,Y-q singularities and the complex cone over the second del Pezzo surface.
引用
收藏
页码:39 / 65
页数:27
相关论文
共 39 条
[1]   Kahler geometry of toric varieties and extremal metrics [J].
Abreu, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) :641-651
[2]  
ABREU M, 2000, IN PRESS TORIC VARIE
[3]  
ACHARYA BS, 1999, ADV THEOR MATH PHYS, V2, P1249
[4]   An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals [J].
Benvenuti, S ;
Franco, S ;
Hanany, A ;
Martelli, D ;
Sparks, J .
JOURNAL OF HIGH ENERGY PHYSICS, 2005, (06) :1451-1475
[5]   New checks and subtleties for AdS/CFT and α-maximization -: art. no. 024 [J].
Bertolini, M ;
Bigazzi, F ;
Cotrone, AL .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (12) :529-541
[6]  
Besse A.L., 1987, EINSTEIN MANIFOLDS
[7]   A note on toric contact geometry [J].
Boyer, CP ;
Galicki, K .
JOURNAL OF GEOMETRY AND PHYSICS, 2000, 35 (04) :288-298
[8]  
Boyer CP, 2001, J DIFFER GEOM, V57, P443
[9]  
BURNS D, 2005, KAEHLER METRICS SING
[10]   ON THE CONE STRUCTURE AT INFINITY OF RICCI FLAT MANIFOLDS WITH EUCLIDEAN VOLUME GROWTH AND QUADRATIC CURVATURE DECAY [J].
CHEEGER, J ;
TIAN, G .
INVENTIONES MATHEMATICAE, 1994, 118 (03) :493-571