Density estimation by wavelet thresholding

被引:31
作者
Donoho, DL
Johnstone, IM
Kerkyacharian, G
Picard, D
机构
[1] UNIV PICARDIE, UEA CNRS 1321, F-80039 AMIENS, FRANCE
[2] UNIV PARIS 07, URA CNRS 1321, F-75221 PARIS 05, FRANCE
关键词
minimax estimation; adaptive estimation; density estimation; spatial adaptation; wavelet orthonormal bases; Besov spaces;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Density estimation is a commonly used test case for nonparametric estimation methods. We explore the asymptotic propel-ties of estimators based on thresholding of empirical wavelet coefficients. Minimax rates of convergence are studied over a large range of Besov function classes B-sigma pq and for a range of global L'(p) error measures, 1 less than or equal to p' less than or equal to infinity. A single wavelet threshold estimator is asymptotically minimax within logarithmic terms simultaneously over a range of spaces and error measures. In particular, when p' > p, some form of nonlinearity is essential, since the minimax linear estimators are suboptimal by polynomial powers of n. A second approach, using an approximation of a Gaussian white-noise model in a Mallows metric, is used to attain exactly optimal rates of convergence for quadratic error (p' = 2).
引用
收藏
页码:508 / 539
页数:32
相关论文
共 33 条
[1]  
Bergh J., 1976, Interpolation spaces. An introduction
[2]  
BIRGE L, 1996, FESTSCHRIFT L LECAM
[3]  
Daubechies I., 1992, Ten Lectures on Wavelets
[4]  
DELYON B, 1993, 782 I RECH INF SYST
[5]   MINIMAX RISK OVER HYPERRECTANGLES, AND IMPLICATIONS [J].
DONOHO, DL ;
LIU, RC ;
MACGIBBON, B .
ANNALS OF STATISTICS, 1990, 18 (03) :1416-1437
[6]  
DONOHO DL, 1995, J ROY STAT SOC B MET, V57, P301
[7]   MINIMAX RISK OF L(P)-BALLS FOR L(Q)-ERROR [J].
DONOHO, DL ;
JOHNSTONE, IM .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) :277-303
[8]  
DONOHO DL, 1996, FESTSCHRIFT L LECAM
[9]  
DONOHO DL, 1996, UNPUB MINIMAX ESTIMA
[10]  
DOUKHAN P, 1990, CR ACAD SCI I-MATH, V310, P425