SAC and SAC-CI calculations of excitation and circular dichroism spectra of straight-chain and cyclic dichalcogens

被引:18
作者
Seino, Junji [1 ]
Honda, Yasushi [1 ]
Hada, Masahiko [1 ]
Nakatsuji, Hiroshi [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Chem, Grad Sch Sci, Hachioji, Tokyo 1920397, Japan
关键词
D O I
10.1021/jp0627271
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate quantum-chemical calculations of the excitation energies and the rotatory strengths of dichalcogens R-Ch-Ch-R(Ch) S, Se, Te) were carried out with the symmetry adapted cluster ( SAC) and SAC-configuration interaction (CI) methods. A series of straight-chain molecules ( dihydrogen dichalcogenide, dimethyl dichalcogenide, and (+)-bis(2-methylbutyl) dichalcogenide) and one cyclic molecule ( 2,3-(R,R)dichalcogenadecalin) were adopted for comparative analysis. The calculated excitation and circular dichroism ( CD) spectra were in good agreement with experimental ones (Laur, P. H. A. In Proceedings of the Third International Symposium on Organic Selenium and Tellurium Compounds; Cagniant, D., Kirsch, G., Eds.; Universite de Metz: Metz, 1979; pp 219-299) within 0.3 eV. The fitting CD spectra also reasonably reproduced the experimental ones. In all the molecules adopted, the first and second lowest bands were assigned to the n-sigma*(Ch-Ch) transition and the third and fourth lowest bands to the n-sigma*(Ch-R) transition. The first and second lowest bands apparently depended on the R-Ch-Ch-R dihedral angle, suggesting that the orbital energies of two sigma*(Ch-Ch) change with the R-Ch-Ch-R dihedral angle. This calculated trend agrees with two empirical rules: the C-2 rule and the quadrant rule.
引用
收藏
页码:10053 / 10062
页数:10
相关论文
共 51 条
[1]  
[Anonymous], 2003, GAUSSIAN 03 REVISION
[2]   Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes [J].
Autschbach, J ;
Jorge, FE ;
Zlegler, T .
INORGANIC CHEMISTRY, 2003, 42 (09) :2867-2877
[3]   Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules [J].
Autschbach, J ;
Ziegler, T ;
van Gisbergen, SJA ;
Baerends, EJ .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (16) :6930-6940
[4]   ELECTRON-DIFFRACTION STUDY OF MOLECULAR STRUCTURE OF DIMETHYLDISULPHIDE, (CH3)2S2 [J].
BEAGLEY, B ;
MCALOON, KT .
TRANSACTIONS OF THE FARADAY SOCIETY, 1971, 67 (587) :3216-&
[5]   Simulation of electronic circular dichroism with rigid Kohn-Sham orbitals: A computational experiment [J].
Bour, P .
JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (26) :5099-5104
[7]   Nondissociative electron capture by disulfide bonds [J].
Carles, S ;
Lecomte, F ;
Schermann, JP ;
Desfrançois, C ;
Xu, S ;
Nilles, JM ;
Bowen, KH ;
Bergès, J ;
Houée-Levin, C .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (23) :5622-5626
[8]   Theoretical UV circular dichroism of aliphatic cyclic dipeptides [J].
Carlson, KL ;
Lowe, SL ;
Hoffmann, MR ;
Thomasson, KA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (24) :5463-5470
[9]   Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements [J].
Check, CE ;
Faust, TO ;
Bailey, JM ;
Wright, BJ ;
Gilbert, TM ;
Sunderlin, LS .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (34) :8111-8116
[10]   Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra [J].
Diedrich, C ;
Grimme, S .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (14) :2524-2539