On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin

被引:116
作者
Schleicher, E
Kowalczyk, RM
Kay, CWM
Hegemann, P
Bacher, A
Fischer, M
Bittl, R
Richter, G
Weber, S
机构
[1] Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany
[2] Univ Regensburg, Inst Biochem 1, D-93053 Regensburg, Germany
[3] Tech Univ Munich, Inst Organ Chem & Biochem, D-85747 Garching, Germany
关键词
D O I
10.1021/ja049553q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononuclectide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic resonance (EPR) and UV-vis spectroscopy at low temperatures (T less than or equal to 80 K). Differences in the electronic structure of the FMN as reflected by altered zero-field splitting parameters of the triplet state could be correlated with changes in the amino acid composition of the binding pocket in wild-type LOV1 and LOV2 as well as in mutant LOV domains. Even at cryogenic temperatures, time-resolved EPR experiments indicate photoreactivity of the wild-type LOV domains, which was further characterized by UV-vis spectroscopy. Wild-type LOV1 and LOV2 were found to form an adduct between the FMN cofactor and the functional cysteine with a yield of 22% and 68%, respectively. The absorption maximum of the low-temperature photoproduct of wild-type LOV2 is red-shifted by about 15 nm as compared with the FMN C(4a)-cysteinyl adduct formed at room temperature. In light of these observations, we discuss a radical-pair reaction mechanism for the primary photoreaction in LOV domains.
引用
收藏
页码:11067 / 11076
页数:10
相关论文
共 53 条
[1]   Vibrational spectroscopy of an algal Phot-LOV1 domain probes the molecular changes associated with blue-light reception [J].
Ataka, K ;
Hegemann, P ;
Heberle, J .
BIOPHYSICAL JOURNAL, 2003, 84 (01) :466-474
[2]   ELECTRON SPIN-LATTICE RELAXATION-TIMES FROM DECAY OF ESR EMISSION-SPECTRA [J].
ATKINS, PW ;
MCLAUCHLAN, KA ;
PERCIVAL, PW .
MOLECULAR PHYSICS, 1973, 25 (02) :281-296
[3]  
BITTKE T, 2003, BIOCHEMISTRY-US, V42, P8506
[4]   The phototropin family of photoreceptors [J].
Briggs, WR ;
Beck, CF ;
Cashmore, AR ;
Christie, JM ;
Hughes, J ;
Jarillo, JA ;
Kagawa, T ;
Kanegae, H ;
Liscum, E ;
Nagatani, A ;
Okada, K ;
Salomon, M ;
Rüdiger, W ;
Sakai, T ;
Takano, M ;
Wada, M ;
Watson, JC .
PLANT CELL, 2001, 13 (05) :993-997
[5]   Phototropins 1 and 2: versatile plant blue-light receptors [J].
Briggs, WR ;
Christie, JM .
TRENDS IN PLANT SCIENCE, 2002, 7 (05) :204-210
[6]   LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide [J].
Christie, JM ;
Salomon, M ;
Nozue, K ;
Wada, M ;
Briggs, WR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8779-8783
[7]   Arabidopsis NPH1:: A flavoprotein with the properties of a photoreceptor for phototropism [J].
Christie, JM ;
Reymond, P ;
Powell, GK ;
Bernasconi, P ;
Raibekas, AA ;
Liscum, E ;
Briggs, WR .
SCIENCE, 1998, 282 (5394) :1698-1701
[8]   Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1 [J].
Corchnoy, SB ;
Swartz, TE ;
Lewis, JW ;
Szundi, I ;
Briggs, WR ;
Bogomolni, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (02) :724-731
[9]   Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction [J].
Crosson, S ;
Moffat, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (06) :2995-3000
[10]   The LOV domain family: Photoresponsive signaling modules coupled to diverse output domains [J].
Crosson, S ;
Rajagopal, S ;
Moffat, K .
BIOCHEMISTRY, 2003, 42 (01) :2-10