A note on the optimal L2-estimate of the finite volume element method

被引:104
作者
Chen, ZY
Li, RH
Zhou, AH
机构
[1] Zhongshan Univ, Dept Computat Sci, Guangzhou 510275, Peoples R China
[2] Jilin Univ, Dept Math, Changchun 130023, Peoples R China
[3] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
elliptic problem; finite volume method; optimal estimate;
D O I
10.1023/A:1014577215948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, the optimal L-2-error estimate of the finite volume element method (FVE) for elliptic boundary value problem is discussed. It is shown that parallel tou-u(h)parallel to(0) less than or equal to Ch(2)\lnh\(1/2)parallel tofparallel to(1,l) and parallel tou-u(h)parallel to0 less than or equal to Ch(2)parallel tofparallel to(1,p). p>1 where u is the solution of the variational problem of the second order elliptic partial differential equation, u(h) is the solution of the FVE scheme for solving the problem, and f is the given function in the right-hand side of the equation.
引用
收藏
页码:291 / 303
页数:13
相关论文
共 22 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[3]   ON THE ACCURACY OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON COMPOSITE GRIDS [J].
CAI, ZQ ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :636-655
[4]  
Chen C. M., 1995, HIGH ACCURACY THEORY
[5]  
CHEN CJ, 1994, CHINESE SCI FUND, V3, P163
[6]  
CHEN Z, 1992, NE MATH J, V8, P127
[7]  
Chen Z., 1994, ACTA SCI NAT U SUNYA, V4, P22
[8]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]  
Ewing R, 2000, NUMER METH PART D E, V16, P285, DOI 10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO