Minimum classification error training for online handwritten word recognition

被引:3
作者
Biem, A [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
来源
EIGHTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION: PROCEEDINGS | 2002年
关键词
D O I
10.1109/IWFHR.2002.1030885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe an application of the Minimum Classification Error (MCE) training criterion to online unconstrained-style word recognition. The described system uses allograph-HMMs to handle writer variability. The result, on vocabularies of 5k to 10k, shows that MCE training achieves around 17% word error rate reduction when compared to the baseline Maximum Likelihood system.
引用
收藏
页码:61 / 66
页数:4
相关论文
共 12 条