A study of suppressed formation of low-conductivity phases in doped Li7La3Zr2O12 garnets by in situ neutron diffraction

被引:68
作者
Chen, Yan [1 ]
Rangasamy, Ezhiylmurugan [2 ]
dela Cruz, Clarina R. [3 ]
Liang, Chengdu [2 ]
An, Ke [1 ]
机构
[1] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA
关键词
LITHIUM ION CONDUCTIVITY; SOLID-ELECTROLYTE; STRUCTURAL EVOLUTION; TRANSPORT PROPERTIES; BATTERY; AL; CONDUCTORS; YTTRIUM; LISICON; MODEL;
D O I
10.1039/c5ta04902d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doped Li7La3Zr2O12 garnets, oxide-based solids with good Li+ conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. However, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediate phases. The off-stoichiometry due to the liquid Li2CO3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. The in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.
引用
收藏
页码:22868 / 22876
页数:9
相关论文
共 57 条
[1]   Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12 [J].
Ahn, Jee Hyun ;
Park, Seung-Young ;
Lee, Jae-Myung ;
Park, Youngsin ;
Lee, Jong-Heun .
JOURNAL OF POWER SOURCES, 2014, 254 :287-292
[2]  
AKINC M, 1987, ADV CERAM MATER, V2, P232
[3]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[4]  
An K., 2012, VDRIVE - data reduction and interactive visualization for event mode neutron diffraction
[5]   First In Situ Lattice Strains Measurements Under Load at VULCAN [J].
An, Ke ;
Skorpenske, Harley D. ;
Stoica, Alexandru D. ;
Ma, Dong ;
Wang, Xun-Li ;
Cakmak, Ercan .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (01) :95-99
[6]   Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 [J].
Awaka, Junji ;
Takashima, Akira ;
Kataoka, Kunimitsu ;
Kijima, Norihito ;
Idemoto, Yasushi ;
Akimoto, Junji .
CHEMISTRY LETTERS, 2011, 40 (01) :60-62
[7]   Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2046-2052
[8]   Origin of the Structural Phase Transition in Li7La3Zr2O12 [J].
Bernstein, N. ;
Johannes, M. D. ;
Khang Hoang .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[9]   THE AC CONDUCTIVITY OF POLYCRYSTALLINE LISICON, LI2+2XZN1-XGEO4, AND A MODEL FOR INTERGRANULAR CONSTRICTION RESISTANCES [J].
BRUCE, PG ;
WEST, AR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (03) :662-669
[10]   Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors "Li7La3Zr2O12" and Li7-xLa3Zr2-xTaxO12 with garnet-type structure [J].
Buschmann, Henrik ;
Berendts, Stefan ;
Mogwitz, Boris ;
Janek, Juergen .
JOURNAL OF POWER SOURCES, 2012, 206 :236-244