The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data

被引:160
作者
Bouchon, M [1 ]
机构
[1] CNRS, F-38041 GRENOBLE, FRANCE
关键词
D O I
10.1029/97JB00623
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a simple method to calculate the stress produced on an earthquake fault during rupture. This method allows the complete evaluation of the stress spatio-temporal history over the fault. We apply this approach to study the changes in shear stress produced during four of the largest earthquakes which occurred along the San Andreas fault system over the last 20 years: the Imperial Valley earthquake of 1979, the Morgan Hill earthquake of 1984, the Loma Prieta earthquake of 1989, and the Northridge earthquake of 1994. We use for this study the tomographic models of the fault rupture obtained from the inversion of the near-field seismic data recorded during these earthquakes. The results obtained show that the static and the dynamic stress drops vary greatly over the fault. The peak values obtained for the four earthquakes studied range from about 20 to 100 MPa. These high values imply that the initial shear stress level on the fault at the onset of the earthquake was high on at least a significant portion of the fault. The regions of the fault which break with a high stress drop are also the regions where slip is large. This suggests that most of the slip produced in a large earthquake takes place over the ''strong'' areas of the fault. Low slip regions tend to break with low stress drops. After the earthquake, the shear stress is increased over a significant portion of the fault, which corresponds to low slip regions. Aftershock activity tends to be concentrated in these areas of stress increase. The apparent strength of the fault before the earthquake (that is the local shear stress increase which is required for rupture) is also extremely heterogeneous. The rupture velocity seems to be inversely correlated with this apparent fault strength, the rupture accelerating over the ''weak'' areas of the fault and slowing down over the high strength areas.
引用
收藏
页码:11731 / 11744
页数:14
相关论文
共 60 条
[1]  
AKI K, 1978, ANN GEOFIS, V30, P341
[2]   RUPTURE VELOCITY OF PLANE STRAIN SHEAR CRACKS [J].
ANDREWS, DJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1976, 81 (32) :5679-5687
[3]   A FAULTING MODEL FOR THE 1979 IMPERIAL-VALLEY EARTHQUAKE [J].
ARCHULETA, RJ .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB6) :4559-4585
[4]  
ARCHULETA RJ, 1982, B SEISMOL SOC AM, V72, P1927
[5]  
BAKUN WH, 1984, SCIENCE, V225, P228
[6]   MECHANISM DIVERSITY OF THE LOMA-PRIETA AFTERSHOCKS AND THE MECHANICS OF MAINSHOCK-AFTERSHOCK INTERACTION [J].
BEROZA, GC ;
ZOBACK, MD .
SCIENCE, 1993, 259 (5092) :210-213
[7]  
BEROZA GC, 1991, B SEISMOL SOC AM, V81, P1603
[8]   LINEARIZED INVERSION FOR FAULT RUPTURE BEHAVIOR - APPLICATION TO THE 1984 MORGAN-HILL, CALIFORNIA, EARTHQUAKE [J].
BEROZA, GC ;
SPUDICH, P .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1988, 93 (B6) :6275-6296
[9]   Frictional constraints on crustal faulting [J].
Boatwright, J ;
Cocco, M .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1996, 101 (B6) :13895-13909
[10]   DISCRETE WAVE NUMBER REPRESENTATION OF ELASTIC WAVE FIELDS IN 3-SPACE DIMENSIONS [J].
BOUCHON, M .
JOURNAL OF GEOPHYSICAL RESEARCH, 1979, 84 (NB7) :3609-3614