Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp strain VS and its environmental distribution

被引:265
作者
Müller, JA
Rosner, BM
von Abendroth, G
Meshulam-Simon, G
McCarty, PL
Spormann, AM
机构
[1] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Sci Biol, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Geog & Environm Sci, Stanford, CA 94305 USA
关键词
D O I
10.1128/AEM.70.8.4880-4888.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Reductive dehalogenation of vinyl chloride (VC) to ethene is the key step in complete anaerobic degradation of chlorinated ethenes. VC-reductive dehalogenase was partially purified from a highly enriched culture of the VC-respiring Dehalococcoides sp. strain VS. The enzyme reduced VC and all dichloroethene (DCE) isomers, but not tetrachloroethene (PCE) or trichloroethene (TCE), at high rates. By using reversed genetics, the corresponding gene (vcrA) was isolated and characterized. Based on the predicted amino acid sequence, VC reductase is a novel member of the family of corrinoid/iron-sulfur cluster containing reductive dehalogenases. The vcrA gene was found to be cotranscribed with vcrB, encoding a small hydrophobic protein presumably acting as membrane anchor for VC reductase, and vcrC, encoding a protein with similarity to transcriptional regulators of the NosR/NirI family. The vcrAB genes were subsequently found to be present and expressed in other cultures containing VC-respiring Dehalococcoides organisms and could be detected in water samples from a field site contaminated with chlorinated ethenes. Therefore, the vcrA gene identified here may be a useful molecular target for evaluating, predicting, and monitoring in situ reductive VC dehalogenation.
引用
收藏
页码:4880 / 4888
页数:9
相关论文
共 38 条
[1]   Bacterial dehalorespiration with chlorinated benzenes [J].
Adrian, L ;
Szewzyk, U ;
Wecke, J ;
Görisch, H .
NATURE, 2000, 408 (6812) :580-583
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]  
CUNNINGHAM JA, 2003, ENHANCED NATURAL ATT
[4]   Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR [J].
Cupples, AM ;
Spormann, AM ;
McCarty, PL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (02) :953-959
[5]   ANAEROBIC OXIDATION OF FERROUS IRON BY PURPLE BACTERIA, A NEW-TYPE OF PHOTOTROPHIC METABOLISM [J].
EHRENREICH, A ;
WIDDEL, F .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1994, 60 (12) :4517-4526
[6]   Bioaugmentation for accelerated in situ anaerobic bioremediation [J].
Ellis, DE ;
Lutz, EJ ;
Odom, JM ;
Buchanan, RJ ;
Bartlett, CL ;
Lee, MD ;
Harkness, MR ;
Deweerd, KA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (11) :2254-2260
[7]  
ENSLEY BD, 1991, ANNU REV MICROBIOL, V45, P283
[8]   Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium [J].
He, JZ ;
Ritalahti, KM ;
Yang, KL ;
Koenigsberg, SS ;
Löffler, FE .
NATURE, 2003, 424 (6944) :62-65
[9]   Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species [J].
He, JZ ;
Ritalahti, KM ;
Aiello, MR ;
Löffler, FE .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (02) :996-1003
[10]   Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe [J].
Hendrickson, ER ;
Payne, JA ;
Young, RM ;
Starr, MG ;
Perry, MP ;
Fahnestock, S ;
Ellis, DE ;
Ebersole, RC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (02) :485-495