In vivo protective effects of ferulic acid ethyl ester against amyloid-beta peptide 1-42-induced oxidative stress

被引:105
作者
Perluigi, Marzia
Joshi, Gururaj
Sultana, Rukhsana
Calabrese, Vittorio
De Marco, Carlo
Coccia, Raffaella
Cini, Chiara
Butterfield, D. Allan [1 ]
机构
[1] Univ Kentucky, Dept Chem, Ctr Membrane Sci, Lexington, KY 40506 USA
[2] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40506 USA
[3] Catania Univ, Dept Chem, Biochem Sect, I-95126 Catania, Italy
[4] Univ Roma La Sapienza, Dept Biochem Sci, I-00185 Rome, Italy
关键词
ferulic acid ethyl ester; amyloid-beta peptide; Alzheimer's disease; heme oxygenase-1; heat shock proteins; oxidative stress; ALZHEIMERS-DISEASE BRAIN; NITRIC-OXIDE SYNTHASE; HEAT-SHOCK PROTEINS; LIPID-PEROXIDATION; HEME OXYGENASE; PROTEOMIC IDENTIFICATION; CULTURED ASTROCYTES; NEURODEGENERATIVE DISORDERS; MITOCHONDRIAL-DNA; NITRATED PROTEINS;
D O I
10.1002/jnr.20879
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid-beta peptide (A beta), a peptide that as both oligomers and fibrils is believed to play a central role in the development and progress of AD by inducing oxidative stress in brain. Therefore, treatment with antioxidants might, in principle, prevent propagation of tissue damage and neurological dysfunction. The aim of the present study was to investigate the in vivo protective effect of the antioxidant compound ferulic acid ethyl ester (FAEE) against A beta-induced oxidative damage on isolated syn-aptosomes. Gerbils were injected intraperitoneally (i.p.) with FAEE or with dimethylsulfoxide, and synaptosomes were isolated from the brain. Synaptosomes isolated from FAEE-injected gerbils and then treated ex vivo with A beta(1-42) showed a significant decrease in oxidative stress parameters: reactive oxygen species levels, protein oxidation (protein carbonyl and 3-nitrotyrosine levels), and lipid peroxidation (4-hydroxy-2-nonenal levels). Consistent with these results, both FAEE and A beta(1-42) increased levels of antioxidant defense systems, evidenced by increased levels of heme oxygenase 1 and heat shock protein 72. FAEE led to decreased levels of inducible nitric oxide synthase. These results are discussed with potential therapeutic implications of FAEE, a brain accessible, multifunctional antioxidant compound, for AD involving modulation of free radicals generated by A beta. (c) 2006 Wiley-Liss, Inc.
引用
收藏
页码:418 / 426
页数:9
相关论文
共 73 条
[1]   Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid β-peptide (1-42), H2O2 and kainic acid:: implications for Alzheimer's disease [J].
Abdul, HM ;
Sultana, R ;
Keller, JN ;
St Clair, DK ;
Markesbery, WR ;
Butterfield, DA .
JOURNAL OF NEUROCHEMISTRY, 2006, 96 (05) :1322-1335
[2]   APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer's disease [J].
Abdul, HM ;
Wenk, GL ;
Gramling, M ;
Hauss-Wegrzyniak, B ;
Butterfield, DA .
NEUROSCIENCE LETTERS, 2004, 368 (02) :148-150
[3]   Protein oxidation in the brain in Alzheimer's disease [J].
Aksenov, MY ;
Aksenova, MV ;
Butterfield, DA ;
Geddes, JW ;
Markesbery, WR .
NEUROSCIENCE, 2001, 103 (02) :373-383
[4]   Alzheimer's disease and oxidative stress: Implications for novel therapeutic approaches [J].
Behl, C .
PROGRESS IN NEUROBIOLOGY, 1999, 57 (03) :301-323
[5]   Mechanism of heat shock protein 72 induction in primary cultured astrocytes after oxygen-glucose deprivation [J].
Bergeron, M ;
Mivechi, NF ;
Giaccia, AJ ;
Giffard, RG .
NEUROLOGICAL RESEARCH, 1996, 18 (01) :64-72
[6]   Protein oxidation in aging, disease, and oxidative stress [J].
Berlett, BS ;
Stadtman, ER .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20313-20316
[7]   Proteomic identification of proteins oxidized by Aβ(1-42) in synaptosomes:: Implications for Alzheimer's disease [J].
Boyd-Kimball, D ;
Castegna, A ;
Sultana, R ;
Poon, HF ;
Petroze, R ;
Lynn, BC ;
Klein, JB ;
Butterfield, DA .
BRAIN RESEARCH, 2005, 1044 (02) :206-215
[8]   Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid β-peptide (1-42) into rat brain:: Implications for Alzheimer's disease [J].
Boyd-Kimball, D ;
Sultana, R ;
Poon, HF ;
Lynn, BC ;
Casamenti, F ;
Pepeu, G ;
Klein, JB ;
Butterfield, DA .
NEUROSCIENCE, 2005, 132 (02) :313-324
[9]  
Butterfield DA, 2002, NEUROBIOL AGING, V23, P655
[10]   Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity:: Implications for neurodegeneration in Alzheimer's disease brain.: A review [J].
Butterfield, DA .
FREE RADICAL RESEARCH, 2002, 36 (12) :1307-1313