Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36

被引:371
作者
Podrez, EA
Poliakov, E
Shen, ZZ
Zhang, RL
Deng, YJ
Sun, MJ
Finton, PJ
Shan, L
Gugiu, B
Fox, PL
Hoff, HF
Salomon, RG
Hazen, SL
机构
[1] Cleveland Clin Fdn, Lerner Res Inst, Dept Cell Biol, Cleveland, OH 44195 USA
[2] Cleveland Clin Fdn, Dept Cardiovasc Med, Cleveland, OH 44195 USA
[3] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[4] Cleveland State Univ, Dept Chem, Cleveland, OH 44115 USA
[5] Cleveland Clin Fdn, Prevent Cardiol Sect, Ctr Cardiovasc Diagnost & Prevent, Cleveland, OH 44195 USA
关键词
D O I
10.1074/jbc.M203318200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The macrophage scavenger receptor CD36 plays an important role in the uptake of oxidized forms of low density lipoprotein (LDL) and contributes to lesion development in murine models of atherosclerosis. However, the structural basis of CD36 lipoprotein ligand recognition is unknown. We now identify a novel class of oxidized phospholipids that serve as high affinity ligands for CD36 and mediate recognition of oxidized forms of LDL by CD36 on macrophages. Small unilamellar vesicles of homogeneous phosphatidylcholine (PC) molecular species were oxidized by the myeloperoxidase (MPO)-H2O2-NO2- system, and products were separated by sequential LC/ESI/MS/MS. In parallel, fractions were tested for their ability to bind to CD36. Four major structurally related phospholipids with CD36 binding activity were identified from oxidized 1-palmitoyl-2-arachidonyl-PC, and four corresponding structural analogs with CD36 binding activity were identified from oxidized 1-palmitoyl-2-linoleoyl-PC. Each was then synthetically prepared, its structure confirmed by multinuclear NMR and high resolution mass spectrometry, and shown to possess identical CD36 binding activity and LC/ESI/MS/MS characteristics in both native and derivatized forms. Based upon the structures of the active compounds identified, and structure-function studies with a variety of synthetic analogs, we conclude that the structural characteristics required for high affinity binding of oxidized PC species to CD36 are a phospholipid with an sn-2 acyl group that incorporates a terminal gamma-hydroxy(or oxo)-alpha,beta-unsaturated carbonyl (oxPC(CD36)). LC/ESI/MS/MS studies demonstrate that oxPC(CD36), are formed during LDL oxidation by multiple distinct pathways. Formation of this novel class of oxidized PC species contributes to CD36-mediated recognition of LDL oxidized by MPO and other biologically relevant mechanisms. The present results offer structural insights into the molecular patterns recognized by the scavenger receptor CD36 and provide a platform for the development of potential therapeutic inhibitory agents.
引用
收藏
页码:38503 / 38516
页数:14
相关论文
共 63 条
[1]   ANALYSIS OF CD36 BINDING DOMAINS - LIGAND SPECIFICITY CONTROLLED BY DEPHOSPHORYLATION OF AN ECTODOMAIN [J].
ASCH, AS ;
LIU, I ;
BRICCETTI, FM ;
BARNWELL, JW ;
KWAKYEBERKO, F ;
DOKUN, A ;
GOLDBERGER, J ;
PERNAMBUCO, M .
SCIENCE, 1993, 262 (5138) :1436-1440
[2]  
ASHKENAS J, 1993, J LIPID RES, V34, P983
[3]  
Baldus S, 2001, J CLIN INVEST, V108, P1759
[4]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[5]   The binding of oxidized low density lipoprotein to mouse CD36 is mediated in part by oxidized phospholipids that are associated with both the lipid and protein moieties of the lipoprotein [J].
Boullier, A ;
Gillotte, KL ;
Hörkkö, S ;
Green, SR ;
Friedmann, P ;
Dennis, EA ;
Witztum, JL ;
Steinberg, D ;
Quehenberger, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (13) :9163-9169
[6]   A tale of two controversies -: Defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species [J].
Brennan, ML ;
Wu, WJ ;
Fu, XM ;
Shen, ZZ ;
Song, W ;
Frost, H ;
Vadseth, C ;
Narine, L ;
Lenkiewicz, E ;
Borchers, MT ;
Lusis, AJ ;
Lee, JJ ;
Lee, NA ;
Abu-Soud, HM ;
Ischiropoulos, H ;
Hazen, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17415-17427
[7]   A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis [J].
Chawla, A ;
Boisvert, WA ;
Lee, CH ;
Laffitte, BA ;
Barak, Y ;
Joseph, SB ;
Liao, D ;
Nagy, L ;
Edwards, PA ;
Curtiss, LK ;
Evans, RM ;
Tontonoz, P .
MOLECULAR CELL, 2001, 7 (01) :161-171
[8]   PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation [J].
Chawla, A ;
Barak, Y ;
Nagy, L ;
Liao, D ;
Tontonoz, P ;
Evans, RM .
NATURE MEDICINE, 2001, 7 (01) :48-52
[9]   PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway [J].
Chinetti, G ;
Lestavel, S ;
Bocher, V ;
Remaley, AT ;
Neve, B ;
Torra, IP ;
Teissier, E ;
Minnich, A ;
Jaye, M ;
Duverger, N ;
Brewer, HB ;
Fruchart, JC ;
Clavey, V ;
Staels, B .
NATURE MEDICINE, 2001, 7 (01) :53-58
[10]   MYELOPEROXIDASE, A CATALYST FOR LIPOPROTEIN OXIDATION, IS EXPRESSED IN HUMAN ATHEROSCLEROTIC LESIONS [J].
DAUGHERTY, A ;
DUNN, JL ;
RATERI, DL ;
HEINECKE, JW .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 94 (01) :437-444