We measured persistent Na(+) current and membrane properties of bursting-pacemaker and nonbursting inspiratory neurons of the neonatal rat pre-Botzinger complex (pre-BotC) in brain stem slice preparations with a rhythmically active respiratory network in vitro. In whole-cell recordings, slow voltage ramps (less than or equal to100 mV/s) inactivated the fast, spike-generating Na(+) current and yielded N-shaped current-voltage relationships with nonmonotonic, negative-slope regions between -60 and -35 mV when the voltage-sensitive component was isolated. The underlying current was a TTX-sensitive persistent Na(+) current (I(NaP)) since the inward current was present at slow voltage ramp speeds (3.3-100 mV/s) and the current was blocked by 1 muM TTX. We measured the biophysical properties of I(NaP) after subtracting the voltage-insensitive "leak" current (I(Leak)) in the presence of Cd(2+) and in some cases tetraethylammonium (TEA). Peak I(NaP) ranged from -50 to -200 pA at a membrane potential of -30 mV. Decreasing the speed of the voltage ramp caused time-dependent I(NaP) inactivation, but this current was present at ramp speeds as low as 3.3 mV/s. I(NaP) activated at -60 mV and obtained half-maximal activation near -40 mV. The subthreshold voltage dependence and slow inactivation kinetics of I(NaP), which closely resemble those of I(NaP) mathematically modeled as a burst-generation mechanism in pacemaker neurons of the pre-BotC, suggest that I(NaP) predominantly influences bursting dynamics of pre-BotC inspiratory pacemaker neurons in vitro. We also found that the ratio of persistent Na(+) conductance to leak conductance (g(NaP)/g(Leak)) can distinguish the phenotypic subpopulations of bursting pacemaker and nonbursting inspiratory neurons: pacemaker neurons showed g(NaP) /g(Leak) > g(NaP) / g(Leak) in nonpacemaker cells (P < 0.0002). We conclude that I(NaP) is ubiquitously expressed by pre-BotC inspiratory neurons and that bursting pacemaker behavior within the heterogeneous population of inspiratory neurons is achieved with specific ratios of these two conductances, g(NaP) and g(Leak).
机构:
Univ Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USA
Del Negro, CA
Morgado-Valle, C
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USA
Morgado-Valle, C
Feldman, JL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USA
机构:
Univ Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USA
Del Negro, CA
Morgado-Valle, C
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USA
Morgado-Valle, C
Feldman, JL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Neurobiol, Syst Neurobiol Lab, Los Angeles, CA 90095 USA