Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins

被引:34
作者
Li, Hui [1 ,2 ]
Pellenz, Stefan [1 ,2 ]
Ulge, Umut [2 ,3 ]
Stoddard, Barry L. [2 ,4 ]
Monnat, Raymond J., Jr. [1 ]
机构
[1] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
[2] NW Genome Engn Consortium, Seattle, WA USA
[3] Univ Washington, Dept Mol & Cellular Biol Program, Seattle, WA 98195 USA
[4] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
基金
美国国家卫生研究院;
关键词
TARGET SITE RECOGNITION; CRYSTAL-STRUCTURE; I-CREI; MAMMALIAN-CELLS; CLEAVAGE SPECIFICITY; DNA RECOGNITION; RECOMBINATION; SEQUENCES; BINDING; DESIGN;
D O I
10.1093/nar/gkp004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Homing endonucleases (HEs) cut long DNA target sites with high specificity to initiate and target the lateral transfer of mobile introns or inteins. This high site specificity of HEs makes them attractive reagents for gene targeting to promote DNA modification or repair. We have generated several hundred catalytically active, monomerized versions of the well-characterized homodimeric I-CreI and I-MsoI LAGLIDADG family homing endonuclease (LHE) proteins. Representative monomerized I-CreI and I-MsoI proteins (collectively termed mCreIs or mMsoIs) were characterized in detail by using a combination of biochemical, biophysical and structural approaches. We also demonstrated that both mCreI and mMsoI proteins can promote cleavage-dependent recombination in human cells. The use of single chain LHEs should simplify gene modification and targeting by requiring the expression of a single small protein in cells, rather than the coordinate expression of two separate protein coding genes as is required when using engineered heterodimeric zinc finger or homing endonuclease proteins.
引用
收藏
页码:1650 / 1662
页数:13
相关论文
共 34 条
[1]   ReadOut:: structure-based calculation of direct and indirect readout energies and specificities for protein-DNA recognition [J].
Ahmad, Shandar ;
Kono, Hidetoshi ;
Arauzo-Bravo, Marcos J. ;
Sarai, Akinori .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W124-W127
[2]   I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment [J].
Argast, GM ;
Stephens, KM ;
Emond, MJ ;
Monnat, RJ .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (03) :345-353
[3]   Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets [J].
Arnould, S ;
Chames, P ;
Perez, C ;
Lacroix, E ;
Duclert, A ;
Epinat, JC ;
Stricher, F ;
Petit, AS ;
Patin, A ;
Guillier, S ;
Rolland, S ;
Prieto, J ;
Blanco, FJ ;
Bravo, J ;
Montoya, G ;
Serrano, L ;
Duchateau, P ;
Pâques, F .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (03) :443-458
[4]   Computational redesign of endonuclease DNA binding and cleavage specificity [J].
Ashworth, Justin ;
Havranek, James J. ;
Duarte, Carlos M. ;
Sussman, Django ;
Monnat, Raymond J., Jr. ;
Stoddard, Barry L. ;
Baker, David .
NATURE, 2006, 441 (7093) :656-659
[5]   Mechanisms of intron mobility [J].
Belfort, M ;
Perlman, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (51) :30237-30240
[6]   Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor [J].
Bolduc, JM ;
Spiegel, PC ;
Chatterjee, P ;
Brady, KL ;
Downing, ME ;
Caprara, MG ;
Waring, RB ;
Stoddard, BL .
GENES & DEVELOPMENT, 2003, 17 (23) :2875-2888
[7]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[8]   Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI [J].
Chevalier, B ;
Turmel, M ;
Lemieux, C ;
Monnat, RJ ;
Stoddard, BL .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 329 (02) :253-269
[9]   Design, activity, and structure of a highly specific artificial endonuclease [J].
Chevalier, BS ;
Kortemme, T ;
Chadsey, MS ;
Baker, D ;
Monnat, RJ ;
Stoddard, BL .
MOLECULAR CELL, 2002, 10 (04) :895-905
[10]   Directed evolution and substrate specificity profile of homing endonuclease I-scel [J].
Doyon, JB ;
Pattanayak, V ;
Meyer, CB ;
Liu, DR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (07) :2477-2484