Cysteine regulation of protein function - as exemplified by NMDA-receptor modulation

被引:321
作者
Lipton, SA
Choi, YB
Takahashi, H
Zhang, DX
Li, WZ
Godzik, A
Bankston, LA
机构
[1] Burnham Inst, Ctr Neurosci & Aging, La Jolla, CA 92037 USA
[2] Burnham Inst, Program Bioinformat & Syst Biol, La Jolla, CA 92037 USA
[3] Burnham Inst, Program Cell Adhes Extracellular Matrix Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1016/S0166-2236(02)02245-2
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn2+, Mn2+ and Cu2+) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn2+ modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.
引用
收藏
页码:474 / 480
页数:7
相关论文
共 40 条
[1]   Nitric oxide induces Zn2+ release from metallothionein by destroying zinc-sulphur clusters without concomitant formation of S-nitrosothiol [J].
Aravindakumar, CT ;
Ceulemans, J ;
De Ley, M .
BIOCHEMICAL JOURNAL, 1999, 344 :253-258
[2]   Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core [J].
Armstrong, N ;
Gouaux, E .
NEURON, 2000, 28 (01) :165-181
[3]   Structure of a glutamate-receptor ligand-binding core in complex with kainate [J].
Armstrong, N ;
Sun, Y ;
Chen, GQ ;
Gouaux, E .
NATURE, 1998, 395 (6705) :913-917
[4]   A single intracellular cysteine residue is responsible for the activation of the olfactory cyclic nucleotide-gated channel by NO [J].
Broillet, MC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15135-15141
[5]   Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition [J].
Chen, NS ;
Moshaver, A ;
Raymond, LA .
MOLECULAR PHARMACOLOGY, 1997, 51 (06) :1015-1023
[6]   Structural basis of the redox switch in the OxyR transcription factor [J].
Choi, HJ ;
Kim, SJ ;
Mukhopadhyay, P ;
Cho, S ;
Woo, JR ;
Storz, G ;
Ryu, SE .
CELL, 2001, 105 (01) :103-113
[7]   Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation [J].
Choi, YB ;
Tenneti, L ;
Le, DA ;
Ortiz, J ;
Bai, G ;
Chen, HSV ;
Lipton, SA .
NATURE NEUROSCIENCE, 2000, 3 (01) :15-21
[8]   Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor [J].
Choi, YB ;
Lipton, SA .
NEURON, 1999, 23 (01) :171-180
[9]   Three pairs of cysteine residues mediate both redox and Zn2+ modulation of the NMDA receptor [J].
Choi, YB ;
Chen, HSV ;
Lipton, SA .
JOURNAL OF NEUROSCIENCE, 2001, 21 (02) :392-400
[10]   Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors [J].
Fayyazuddin, A ;
Villarroel, A ;
Le Goff, A ;
Lerma, J ;
Neyton, J .
NEURON, 2000, 25 (03) :683-694