Efficient estimation of additive nonparametric regression models

被引:95
作者
Linton, OB
机构
[1] Cowles Foundation for Research in Economics, Yale University, New Haven
关键词
additive regression models; backfitting; dimensionality reduction; Kernel estimation; nonparametric regression;
D O I
10.1093/biomet/84.2.469
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We define a new procedure for estimating additive nonparametric regression models. We use the integration method of Linton & Nielsen (1995) to provide starting values that are then used in a one-step backfitting procedure. We show that our new method is efficient in a certain sense and dominates the straight integration method according to mean squared error.
引用
收藏
页码:469 / 473
页数:5
相关论文
共 11 条
[1]  
BREMAN L, 1985, J AM STAT ASSOC, V80, P580
[2]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115
[3]  
Cox D.R., 1974, THEORETICAL STAT
[4]   DESIGN-ADAPTIVE NONPARAMETRIC REGRESSION [J].
FAN, JQ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :998-1004
[5]  
Hardle W., 1990, APPL NONPARAMETRIC R, DOI DOI 10.1017/CCOL0521382483
[6]  
Hastie T., 1990, Generalized additive model
[7]   A KERNEL-METHOD OF ESTIMATING STRUCTURED NONPARAMETRIC REGRESSION-BASED ON MARGINAL INTEGRATION [J].
LINTON, O ;
NIELSEN, JP .
BIOMETRIKA, 1995, 82 (01) :93-100
[8]   Estimation of additive regression models with known links [J].
Linton, OB ;
Hardle, W .
BIOMETRIKA, 1996, 83 (03) :529-540
[9]   KERNEL ESTIMATION OF PARTIAL MEANS AND A GENERAL VARIANCE ESTIMATOR [J].
NEWEY, WK .
ECONOMETRIC THEORY, 1994, 10 (02) :233-253
[10]  
STONE CJ, 1985, ANN STAT, V13, P685