Simulating the Baltic Sea ice season with a coupled ice-ocean model

被引:49
作者
Haapala, J
Lepparanta, M
机构
来源
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY | 1996年 / 48卷 / 05期
关键词
D O I
10.1034/j.1600-0870.1996.t01-4-00003.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Baltic Sea ice season climatology is studied with a coupled ice-ocean model, The evolution of sea temperature, ice thickness and ice drift has been simulated for three particular ice seasons, normal (1983/84), severe (1986/87) and mild (1991/92), forced with the prescribed daily atmospheric data. The ice model is a plastic Hibler model with a three-level ice thickness distribution (open water, undeformed ice and ridged ice) and thermodynamics. The ocean model consists of a barotropic circulation model with 4-layer vertical thermodynamic evolution. The models are coupled via the momentum and heat fluxes; the grid size is 10' in latitude and 20' in longitude. With the same initial conditions and observed meteorological forcing, a fully prognostic thirteen-months integration was performed for each ice season from 1 May to 31 May in the following year. The model results were compared with routine ice charts. The annual cycles of sea surface temperature, ice thickness and coverage, and the interannual variability of the ice seasons were realistically simulated. Ocean surface temperatures were produced well in the shallow sea areas, but over the deeper central parts of the basins they were too warm in the winter stage. On the average and severe winters the predicted maximum ice extent was about 20% less than that observed, while in the mild winter the agreement was very good. Basin scale features were rather well realized in the ice thickness field. The freezing date and ice growth were in agreement with observations, but the beginning of the ice melting was delayed which led to about 1-2 weeks delay in the ice break-up date.
引用
收藏
页码:622 / 643
页数:22
相关论文
共 50 条
[1]   VARIABILITY OF THE ANNUAL MAXIMUM ICE EXTENT OF THE BALTIC SEA [J].
ALENIUS, P ;
MAKKONEN, L .
ARCHIVES FOR METEOROLOGY GEOPHYSICS AND BIOCLIMATOLOGY SERIES B-THEORETICAL AND APPLIED CLIMATOLOGY, 1981, 29 (04) :393-398
[2]  
ANDERSSON T, 1994, MON WEATHER REV, V122, P1036, DOI 10.1175/1520-0493(1994)122<1036:CODACO>2.0.CO
[3]  
2
[4]  
*BALTEX, 1995, PUB GKSS RES CTR, V2
[5]  
Budyko M.I., 1974, CLIMATE LIFE, DOI DOI 10.1016/0019-1035(76)90196-2
[6]   PHYSICAL-PROPERTIES OF SEAWATER - A NEW SALINITY SCALE AND EQUATION OF STATE FOR SEAWATER [J].
FOFONOFF, NP .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1985, 90 (NC2) :3332-3342
[7]  
HAAPALA J, 1996, REPORT SERIES GEOPHY, V35
[8]  
Haapala J., 1994, FINNISH MAR RES, V262, P51
[9]  
HIBLER WD, 1979, J PHYS OCEANOGR, V9, P815, DOI 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO
[10]  
2