N-linked glycan recognition and processing:: the molecular basis of endoplasmic reticulum quality control

被引:103
作者
Moremen, Kelley W.
Molinari, Maurizio [1 ]
机构
[1] Inst Res Biomed, CH-6500 Bellinzona, Switzerland
[2] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
关键词
D O I
10.1016/j.sbi.2006.08.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nascent polypeptides; emerging into the lumen of the encloplasmic reticulum (ER) are N-glycosylated on asparagines in Asn-Xxx-Ser/Thr motifs. Processing of the core oligosaccharide eventually determines the fate of the associated polypeptide by regulating entry into and retention by the calnexin chaperone system, or extraction from the ER folding environment for disposal. Recent advances have shown that at least two N-glycans are necessary for protein access to the calnexin chaperone system and that polypeptide cycling in the system is a rather rare event, which, for folding-defective polypeptides, is activated only upon persistent misfolding. Additionally, dismantling of the polypeptide-bound N-glycan interrupts futile folding attempts, and elicits preparation of the misfolded chain fordislocation into the cytosol and degradation.
引用
收藏
页码:592 / 599
页数:8
相关论文
共 52 条
[1]   Pharmacological chaperones:: potential treatment for conformational diseases [J].
Bernier, V ;
Lagacé, M ;
Bichet, DG ;
Bouvier, M .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2004, 15 (05) :222-228
[2]   Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen [J].
Bhamidipati, A ;
Denic, V ;
Quan, EM ;
Weissman, JS .
MOLECULAR CELL, 2005, 19 (06) :741-751
[3]   Dissecting glycoprotein quality control in the secretory pathway [J].
Cabral, CM ;
Liu, Y ;
Sifers, RN .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (10) :619-624
[4]   Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi [J].
Caldwell, SR ;
Hill, KJ ;
Cooper, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23296-23303
[5]   More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle [J].
Deprez, P ;
Gautschi, M ;
Helenius, A .
MOLECULAR CELL, 2005, 19 (02) :183-195
[6]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888
[7]   EDEM contributes to maintenance of protein folding efficiency and secretory capacity [J].
Eriksson, KK ;
Vago, R ;
Calanca, V ;
Galli, C ;
Paganetti, P ;
Molinari, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (43) :44600-44605
[8]   N-glycan structure of a short-lived variant of ribophorin I expressed in the MadIA214 glycosylation-defective cell line reveals the role of a mannosidase that is not ER mannosidase I in the process of glycoprotein degradation [J].
Ermonval, M ;
Kitzmüller, C ;
Mir, AM ;
Cacan, R ;
Ivessa, NE .
GLYCOBIOLOGY, 2001, 11 (07) :565-576
[9]   The UDP-Glc:glycoprotein glucosyltransferase is essential for Schizosaccharomyces pombe viability under conditions of extreme endoplasmic reticulum stress [J].
Fanchiotti, S ;
Fernández, F ;
D'Alessio, C ;
Parodi, AJ .
JOURNAL OF CELL BIOLOGY, 1998, 143 (03) :625-635
[10]   The unfolded protein response in a dolichyl phosphate mannose-deficient Chinese hamster ovary cell line points out the key role of a demannosylation step in the quality-control mechanism of N-glycoproteins [J].
Foulquier, F ;
Harduin-Lepers, A ;
Duvet, S ;
Marchal, I ;
Mir, AM ;
Delannoy, P ;
Chirat, F ;
Cacan, R .
BIOCHEMICAL JOURNAL, 2002, 362 (02) :491-498