Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion

被引:186
作者
Yang, Renqiang
Wu, Hongbin
Cao, Yong
Bazan, Guillermo C. [1 ]
机构
[1] Univ Calif Santa Barbara, Mitsubishi Chem Ctr Adv Mat, Dept Mat, Inst Polymers & Organ Solids, Santa Barbara, CA 93106 USA
[2] S China Univ Technol, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Peoples R China
关键词
D O I
10.1021/ja063723c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Counterion exchange in cationic conjugated polyelectrolytes provides for a straightforward method to modulate the performance of these materials as the electron transport (injection) layer (ETL) in organic light emitting diodes. The bromide counterions of [(9,9-bis(6′-N,N,N-trimethylammonium)-hexyl)fluorene]bromide (PF-Br) can be easily replaced with trifluoromethylsulfonate (PF-CF3SO3), tetrakis(imidazolyl)borate (PF-BIm4) or tetrakis(3,5-trifluoromethylphenyl)borate (PF-BArF4) by a procedure that involves precipitation and washing. The performance of LEDs using MEH-PPV as the emissive layer, Al as the cathode, and the conjugated polyelectrolytes as the ETL varies in the order: PF-BIm4 > PF-CF3SO3 > PF-Br > PF-BArF4. In the case of PF-BIm4, the luminous efficiencies of the devices are similar to those of devices using Ba as the cathode. Thus, by properly choosing the counterion one can use higher work function metals that are more stable than lower work function metals without a substantial barrier to electron injection. Copyright © 2006 American Chemical Society.
引用
收藏
页码:14422 / 14423
页数:2
相关论文
共 24 条
[1]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P374, DOI 10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO
[2]  
2-W
[3]   VISIBLE-LIGHT EMISSION FROM SEMICONDUCTING POLYMER DIODES [J].
BRAUN, D ;
HEEGER, AJ .
APPLIED PHYSICS LETTERS, 1991, 58 (18) :1982-1984
[4]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[5]   Ultrathin layer alkaline earth metals as stable electron-injecting electrodes for polymer light emitting diodes [J].
Cao, Y ;
Yu, G ;
Parker, ID ;
Heeger, AJ .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3618-3623
[6]   Alkoxysulfonate-functionalized PEDOT polyelectrolyte multilayer films: Electrochromic and hole transport materials [J].
Cutler, CA ;
Bouguettaya, M ;
Kang, TS ;
Reynolds, JR .
MACROMOLECULES, 2005, 38 (08) :3068-3074
[7]   Single-component light-emitting electrochemical cell fabricated from cationic polyfluorene: Effect of film morphology on device performance [J].
Edman, L ;
Liu, B ;
Vehse, M ;
Swensen, J ;
Bazan, GC ;
Heeger, AJ .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04)
[8]   Multilayer polymer light-emitting diodes: White-light emission with high efficiency [J].
Gong, X ;
Wang, S ;
Moses, D ;
Bazan, GC ;
Heeger, AJ .
ADVANCED MATERIALS, 2005, 17 (17) :2053-+
[9]   High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors [J].
Huang, F ;
Hou, LT ;
Wu, HB ;
Wang, XH ;
Shen, HL ;
Cao, W ;
Yang, W ;
Cao, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (31) :9845-9853
[10]   Novel electroluminescent conjugated polyelectrolytes based on polyfluorene [J].
Huang, F ;
Wu, HB ;
Wang, D ;
Yang, W ;
Cao, Y .
CHEMISTRY OF MATERIALS, 2004, 16 (04) :708-716