Training multilayer perceptrons via minimization of sum of ridge functions

被引:46
作者
Wu, W
Feng, GR
Li, X
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116023, Peoples R China
[2] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
关键词
multilayer perceptrons; online gradient algorithms; ridge functions;
D O I
10.1023/A:1016249727555
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the problem of training multilayer perceptrons in neural networks, we consider the problem of minimizing E(x) = Sigma(i=1)(n) f(i) (xi(i) . x), where xi(i) is an element of R-s, 1 less than or equal to i less than or equal to n, and each f(i) (xi(i).x) is a ridge function. We show that when n is small the problem of minimizing E can be treated as one of minimizing univariate functions, and we use the gradient algorithms for minimizing E when n is moderately large. For large n, we present the online gradient algorithms and especially show the monotonicity and weak convergence of the algorithms.
引用
收藏
页码:331 / 347
页数:17
相关论文
共 24 条
[1]  
Bertsekas D. P., 1996, Neuro Dynamic Programming, V1st
[2]  
Bertsekas DP, 1997, J. Oper. Res. Soc., V48, P334, DOI 10.1057/palgrave.jors.2600425
[3]  
ELLACOTT SW, 1993, MATH APPROACHES NEUR, P103
[4]   Parameter convergence and learning curves for neural networks [J].
Fine, TL ;
Mukherjee, S .
NEURAL COMPUTATION, 1999, 11 (03) :747-769
[6]  
GAIVORONSKI AA, 1994, OPTIMIZATION METHODS, V4, P117, DOI DOI 10.1080/10556789408805582
[7]   Optimal convergence of on-line backpropagation [J].
Gori, M ;
Maggini, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01) :251-254
[8]   Convergent on-line algorithms for supervised learning in neural networks [J].
Grippo, L .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (06) :1284-1299
[9]  
Hassoun M. H., 1995, FUNDAMENTALS ARTIFIC
[10]  
Haykin S.S., 1999, Neural Networks, V2nd ed.