The Energy Landscape for the Interaction of the Family 1 Carbohydrate-Binding Module and the Cellulose Surface is Altered by Hydrolyzed Glycosidic Bonds

被引:66
作者
Bu, Lintao [1 ]
Beckham, Gregg T. [1 ]
Crowley, Michael F. [2 ]
Chang, Christopher H. [3 ]
Matthews, James F. [2 ]
Bomble, Yannick J. [2 ]
Adney, William S. [2 ]
Himmel, Michael E. [2 ]
Nimlos, Mark R. [1 ]
机构
[1] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Chem & Biosci Ctr, Golden, CO 80401 USA
[3] Natl Renewable Energy Lab, Mat & Computat Sci Ctr, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
SYNCHROTRON X-RAY; TRICHODERMA-REESEI; CELLOBIOHYDROLASE-I; CRYSTAL-STRUCTURE; FORCE-FIELD; DYNAMICS; DOMAIN; IDENTIFICATION; SIMULATIONS; BIOFUELS;
D O I
10.1021/jp904003z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A multiscale simulation model is used to construct potential and free energy surfaces for the carbohydrate-binding module [CBM] from an industrially important cellulase, Trichoderma reesei cellobiohydrolase 1, on the hydrophobic face of a coarse-grained cellulose 1 beta polymorph. We predict from computation that the CBM alone exhibits regions of stability on the hydrophobic face of cellulose every 5 and 10 angstrom, corresponding to a glucose unit and a cellobiose unit, respectively. In addition, we predict a new role for the CBM: specifically, that in the presence of hydrolyzed cellulose chain ends, the CBM exerts a thermodynamic driving force to translate away from the free cellulose chain ends. This suggests that the CBM is not only required for binding to cellulose, as has been known for two decades, but also that it has evolved to both assist the enzyme in recognizing a cellulose chain end and exert a driving force on the enzyme during processive hydrolysis of cellulose.
引用
收藏
页码:10994 / 11002
页数:9
相关论文
共 46 条
[1]   Systematic coarse graining of biomolecular and softw-matter systems [J].
Ayton, Gary S. ;
Noid, Will G. ;
Voth, Gregory A. .
MRS BULLETIN, 2007, 32 (11) :929-934
[2]   Hydrolysis of cellulose using ternary mixtures of purified celluloses [J].
Baker, JO ;
Ehrman, CI ;
Adney, WS ;
Thomas, SR ;
Himmel, ME .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1998, 70-2 (1) :395-403
[3]   Identification of two functionally different classes of exocellulases [J].
Barr, BK ;
Hsieh, YL ;
Ganem, B ;
Wilson, DB .
BIOCHEMISTRY, 1996, 35 (02) :586-592
[4]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   De novo prediction of the structures of M. tuberculosis membrane proteins [J].
Bu, Lintao ;
Brooks, Charles L., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (16) :5384-+
[7]   Membrane assembly of simple helix homo-oligomers studied via molecular dynamics simulations [J].
Bu, Lintao ;
Im, Wonpil ;
Brooks, Charles L., III .
BIOPHYSICAL JOURNAL, 2007, 92 (03) :854-863
[8]   NON-HYDROLYTIC DISRUPTION OF CELLULOSE FIBERS BY THE BINDING DOMAIN OF A BACTERIAL CELLULASE [J].
DIN, N ;
GILKES, NR ;
TEKANT, B ;
MILLER, RC ;
WARREN, AJ ;
KILBURN, DG .
BIO-TECHNOLOGY, 1991, 9 (11) :1096-1099
[9]   Minimalist models for protein folding and design [J].
Head-Gordon, T ;
Brown, S .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (02) :160-167
[10]  
Himmel M.E., 2008, BIOMASS RECALCITRANC