Purification of recombinant flavanone 3β-hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation

被引:41
作者
Lukacin, R
Gröning, I
Schiltz, E
Britsch, L
Matern, U
机构
[1] Univ Marburg, Inst Pharmazeut Biol, D-35037 Marburg, Germany
[2] Univ Freiburg, Inst Organ Chem & Biochem, D-79104 Freiburg, Germany
[3] Merck KGaA, R&D Bioseparat, Sci Lab Prod, D-64271 Darmstadt, Germany
关键词
Petunia hybrida; flavonoid biosynthesis; flavanone; 3; beta-hydroxylase; 2-oxoglutarate-dependent dioxygenase; purification of recombinant dioxygenase; proteolytic degradation;
D O I
10.1006/abbi.1999.1676
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Flavanone 3 beta-hydroxylase catalyzes the Fe-II/oxoglutarate-dependent hydroxylation of (2S)-flavanones to (2R,3R)-dihydroflavonols in the course of flavonol/anthocyanin or catechin biosynthesis. The enzyme from Petunia hybrida consists of a 41,655-Da polypeptide that is prone to rapid proteolysis in crude plant extracts as well as on expression in Escherichia coli, and commercial protease inhibitors were inefficient in stopping the degradation. To pinpoint the primary site of proteolysis and to improve the activity yields, two revised schemes of purification were developed for the recombinant polypeptides, Applying a four-step protocol based on extraction and ion-exchange chromatography at pH 7.5, the primary, catalytically inactive proteolytic enzyme fragment (1.1 mg) was isolated and shown to cross-react on Western blotting as one homogeneous band of about 38 kDa. Mass spectrometric analysis assigned a mass of 37,820 +/- 100 Da to this fragment, and partial sequencing revealed an unblocked amino terminus identical to that of the native 3 beta-hydroxylase. Thus, the native enzyme had been degraded by proteolysis of a small carboxy-terminal portion, and the primary site of cleavage must be assigned most likely to the Glu 337-Leu 338 bond, accounting for a loss of about 3800 Da. Alternatively, the enzyme degradation was greatly reduced when the extraction of recombinant bacteria was carried out with phosphate buffer at pH 5.5 followed by size exlusion and anion-exchange chromatography. This rapid, two-step purification resulted in a homogeneous 3 beta-hydroxylase of high specific acitivity (about 32 mkat/kg) at roughly 5% yield, and the procedure is a major break-through in mechanistic investigations of this class of labile dioxygenases, (C) 2000 Academic Press.
引用
收藏
页码:364 / 370
页数:7
相关论文
共 21 条