Fabrication of three-dimensional woodpile photonic crystals in a PbSe quantum dot composite material

被引:45
作者
Li, Jiafang [1 ]
Jia, Baohua
Zhou, Guangyong
Gu, Min
机构
[1] Swinburne Univ Technol, Ctr Microphoton, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia
[2] Swinburne Univ Technol, CUDOS, Fac Engn & Ind Sci, Hawthorn, Vic 3122, Australia
关键词
D O I
10.1364/OE.14.010740
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Incorporating active media into three-dimensional (3D) photonic crystals (PCs) is a useful step towards exploring the functionalities of PCs. Here we report, for the first time, on the fabrication of 3D woodpile PCs with a commercial PbSe quantum dot (QD) composite material by using the two-photon polymerization technique. The fabricated crystals possess photonic band gaps in the near-infrared wavelength region, which have a suppression rate of similar to 50% in the stacking direction, measured with an angle-resolved Fourier-transform infrared spectrometer. The woodpile structures fabricated under different conditions are also characterized by using a scanning near-field optical microscope, providing a useful feedback towards optimizing the fabrication of 3D woodpile PCs in QD composites. (c) 2006 Optical Society of America.
引用
收藏
页码:10740 / 10745
页数:6
相关论文
共 22 条
[1]   Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres [J].
Blanco, A ;
Chomski, E ;
Grabtchak, S ;
Ibisate, M ;
John, S ;
Leonard, SW ;
Lopez, C ;
Meseguer, F ;
Miguez, H ;
Mondia, JP ;
Ozin, GA ;
Toader, O ;
van Driel, HM .
NATURE, 2000, 405 (6785) :437-440
[2]   Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope [J].
Campillo, AL ;
Hsu, JWP ;
White, CA ;
Rosenberg, A .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (05) :2801-2807
[3]   Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J].
Cumpston, BH ;
Ananthavel, SP ;
Barlow, S ;
Dyer, DL ;
Ehrlich, JE ;
Erskine, LL ;
Heikal, AA ;
Kuebler, SM ;
Lee, IYS ;
McCord-Maughon, D ;
Qin, JQ ;
Röckel, H ;
Rumi, M ;
Wu, XL ;
Marder, SR ;
Perry, JW .
NATURE, 1999, 398 (6722) :51-54
[4]   Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J].
Deubel, M ;
Von Freymann, G ;
Wegener, M ;
Pereira, S ;
Busch, K ;
Soukoulis, CM .
NATURE MATERIALS, 2004, 3 (07) :444-447
[5]   Near-field optical investigation of three-dimensional photonic crystals -: art. no. 015601 [J].
Flück, E ;
van Hulst, NF ;
Vos, WL ;
Kuipers, L .
PHYSICAL REVIEW E, 2003, 68 (01) :4
[6]   A solution-processed 1.53μm quantum dot laser with temperature-invariant emission wavelength [J].
Hoogland, S ;
Sukhovatkin, V ;
Howard, I ;
Cauchi, S ;
Levina, L ;
Sargent, EH .
OPTICS EXPRESS, 2006, 14 (08) :3273-3281
[7]  
JOHNSON SG, 1999, MIT PHOTONIC BANDS S
[8]   Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption. [J].
Kawata, S ;
Sun, HB ;
Tanaka, T ;
Takada, K .
NATURE, 2001, 412 (6848) :697-698
[9]   A three-dimensional photonic crystal operating at infrared wavelengths [J].
Lin, SY ;
Fleming, JG ;
Hetherington, DL ;
Smith, BK ;
Biswas, R ;
Ho, KM ;
Sigalas, MM ;
Zubrzycki, W ;
Kurtz, SR ;
Bur, J .
NATURE, 1998, 394 (6690) :251-253
[10]   Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals [J].
Lodahl, P ;
van Driel, AF ;
Nikolaev, IS ;
Irman, A ;
Overgaag, K ;
Vanmaekelbergh, D ;
Vos, WL .
NATURE, 2004, 430 (7000) :654-657