Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens

被引:1008
作者
Dixit, Atray [1 ,2 ]
Pamas, Oren [1 ,10 ]
Li, Biyu [1 ]
Chen, Jenny [1 ,2 ]
Fulco, Charles P. [1 ]
Jerby-Amon, Livnat [1 ]
Marjanovic, Nemanja D. [1 ,3 ]
Dionne, Danielle [1 ]
Burks, Tyler [1 ]
Raychowdhury, Raktima [1 ]
Adamson, Britt [5 ]
Norman, Thomas M. [5 ]
Lander, Eric S. [1 ,4 ,6 ]
Weissman, Jonathan S. [5 ,7 ]
Friedman, Nir [1 ,8 ,9 ]
Regev, Aviv [1 ,6 ,7 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[2] Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] MIT, Computat & Syst Biol, Cambridge, MA 02140 USA
[4] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
[5] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, Calif Inst Quantitat Biosci, Ctr RNA Syst Biol, San Francisco, CA 94158 USA
[6] MIT, Dept Biol, Cambridge, MA 02140 USA
[7] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
[8] Hebrew Univ Jerusalem, Sch Engn & Comp Sci, IL-91904 Jerusalem, Israel
[9] Hebrew Univ Jerusalem, Inst Life Sci, IL-91904 Jerusalem, Israel
[10] Hebrew Univ Jerusalem, Hadassah Med Sch, Lautenberg Ctr Gen & Tumor Immunol, BioMed Res Inst Israel Canada,Fac Med IMRIC, IL-91120 Jerusalem, Israel
关键词
MOUSE BONE-MARROW; TRANSCRIPTIONAL NETWORK; MITOCHONDRIAL BIOGENESIS; REGULATORY NETWORKS; FITNESS LANDSCAPES; DENDRITIC CELLS; IMMUNE CELLS; EXPRESSION; GENOME; DISCOVERY;
D O I
10.1016/j.cell.2016.11.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic screens help infer gene function in mammalian cells, but it has remained difficult to assay complex phenotypes-such as transcriptional profiles-at scale. Here, we develop Perturb-seq, combining single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-based perturbations to perform many such assays in a pool. We demonstrate Perturb-seq by analyzing 200,000 cells in immune cells and cell lines, focusing on transcription factors regulating the response of dendritic cells to lipopolysaccharide (LPS). Perturb-seq accurately identifies individual gene targets, gene signatures, and cell states affected by individual perturbations and their genetic interactions. We posit new functions for regulators of differentiation, the anti-viral response, and mitochondrial function during immune activation. By decomposing many high content measurements into the effects of perturbations, their interactions, and diverse cell metadata, Perturb-seq dramatically increases the scope of pooled genomic assays.
引用
收藏
页码:1853 / +
页数:31
相关论文
共 60 条
[1]   Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses [J].
Amit, Ido ;
Garber, Manuel ;
Chevrier, Nicolas ;
Leite, Ana Paula ;
Donner, Yoni ;
Eisenhaure, Thomas ;
Guttman, Mitchell ;
Grenier, Jennifer K. ;
Li, Weibo ;
Zuk, Or ;
Schubert, Lisa A. ;
Birditt, Brian ;
Shay, Tal ;
Goren, Alon ;
Zhang, Xiaolan ;
Smith, Zachary ;
Deering, Raquel ;
McDonald, Rebecca C. ;
Cabili, Moran ;
Bernstein, Bradley E. ;
Rinn, John L. ;
Meissner, Alex ;
Root, David E. ;
Hacohen, Nir ;
Regev, Aviv .
SCIENCE, 2009, 326 (5950) :257-263
[2]   A Systematic Mammalian Genetic Interaction Map Reveals Pathways Underlying Ricin Susceptibility [J].
Bassik, Michael C. ;
Kampmann, Martin ;
Lebbink, Robert Jan ;
Wang, Shuyi ;
Hein, Marco Y. ;
Poser, Ina ;
Weibezahn, Jimena ;
Horlbeck, Max A. ;
Chen, Siyuan ;
Mann, Matthias ;
Hyman, Anthony A. ;
LeProust, Emily M. ;
McManus, Michael T. ;
Weissman, Jonathan S. .
CELL, 2013, 152 (04) :909-922
[3]  
Beerenwinkel N, 2007, STAT SINICA, V17, P1317
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   High-throughput Phenotyping of Lung Cancer Somatic Mutations [J].
Berger, Alice H. ;
Brooks, Angela N. ;
Wu, Xiaoyun ;
Shrestha, Yashaswi ;
Chouinard, Candace ;
Piccioni, Federica ;
Bagul, Mukta ;
Kamburov, Atanas ;
Imielinski, Marcin ;
Hogstrom, Larson ;
Zhu, Cong ;
Yang, Xiaoping ;
Pantel, Sasha ;
Sakai, Ryo ;
Watson, Jacqueline ;
Kaplan, Nathan ;
Campbell, Joshua D. ;
Singh, Shantanu ;
Root, David E. ;
Narayan, Rajiv ;
Natoli, Ted ;
Lahr, David L. ;
Tirosh, Itay ;
Tamayo, Pablo ;
Getz, Gad ;
Wong, Bang ;
Doench, John ;
Subramanian, Aravind ;
Golub, Todd R. ;
Meyerson, Matthew ;
Boehm, Jesse S. .
CANCER CELL, 2016, 30 (02) :214-228
[6]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[7]  
Cannoodt R., 2016, bioRxiv
[8]   Structure and function of a transcriptional network activated by the MAPK Hog1 [J].
Capaldi, Andrew P. ;
Kaplan, Tommy ;
Liu, Ying ;
Habib, Naomi ;
Regev, Aviv ;
Friedman, Nir ;
O'Shea, Erin K. .
NATURE GENETICS, 2008, 40 (11) :1300-1306
[9]   Systematic Discovery of TLR Signaling Components Delineates Viral-Sensing Circuits [J].
Chevrier, Nicolas ;
Mertins, Philipp ;
Artyomov, Maxim N. ;
Shalek, Alex K. ;
Iannacone, Matteo ;
Ciaccio, Mark F. ;
Gat-Viks, Irit ;
Tonti, Elena ;
DeGrace, Marciela M. ;
Clauser, Karl R. ;
Garber, Manuel ;
Eisenhaure, Thomas M. ;
Yosef, Nir ;
Robinson, Jacob ;
Sutton, Amy ;
Andersen, Mette S. ;
Root, David E. ;
von Andrian, Ulrich ;
Jones, Richard B. ;
Park, Hongkun ;
Carr, Steven A. ;
Regev, Aviv ;
Amit, Ido ;
Hacohen, Nir .
CELL, 2011, 147 (04) :853-867
[10]   Statistical significance of variables driving systematic variation in high-dimensional data [J].
Chung, Neo Christopher ;
Storey, John D. .
BIOINFORMATICS, 2015, 31 (04) :545-554