A completely integrable Hamiltonian system

被引:41
作者
Calogero, F [1 ]
Francoise, JP [1 ]
机构
[1] UNIV ROME LA SAPIENZA 1,ROME,ITALY
关键词
D O I
10.1063/1.531536
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical system characterized by the Hamiltonian H(q,p) = Sigma(j,k=1)(n) p(j)p(k)f(q(j) - (q)k) with f(x) = lambda + mu cos(nu chi) + mu' sin(nu\chi\) is completely integrable. Here n is an arbitrary positive integer and lambda,mu,mu,mu',nu are 4 arbitrary constants (lambda and mu real, mu' and nu both real or both imaginary). (C) 1996 American Institute of Physics.
引用
收藏
页码:2863 / 2871
页数:9
相关论文
共 8 条
[1]  
BRUSCHI M, IN PRESS
[2]   AN INTEGRABLE HAMILTONIAN SYSTEM [J].
CALOGERO, F .
PHYSICS LETTERS A, 1995, 201 (04) :306-310
[3]  
CALOGERO F, 1992, ANN I H POINCARE-PHY, V57, P167
[4]  
CALOGERO F, IN PRESS
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[7]  
Fokas A., 1981, PHYSICA D, V4, P47