PIPER: An FFT-based protein docking program with pairwise potentials

被引:640
作者
Kozakov, Dima
Brenke, Ryan
Comeau, Stephen R.
Vajda, Sandor
机构
[1] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[2] Boston Univ, Program Bioinformat, Boston, MA 02215 USA
关键词
fast Fourier Transform; rigid body docking; intermolecular potentials; structure based potentials; scoring function;
D O I
10.1002/prot.21117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Fast Fourier Transform (FFT) correlation approach to protein-protein docking can evaluate the energies of billions of docked conformations on a grid if the energy is described in the form of a correlation function. Here, this restriction is removed, and the approach is efficiently used with pairwise interaction potentials that substantially improve the docking results. The basic idea is approximating the interaction matrix by its eigen-vectors corresponding to the few dominant eigenvalues, resulting in an energy expression written as the sum of a few correlation functions, and solving the problem by repeated FFT calculations. In addition to describing how the method is implemented, we present a novel class of structure-based pairwise intermolecular potentials. The DARS (Decoys As the Reference State) potentials are extracted from structures of protein-protein complexes and use large sets of docked conformations as decoys to derive atom pair distributions in the reference state. The current version of the DARS potential works well for enzyme-inhibitor complexes. With the new FFT-based program, DARS provides much better docking results than the earlier approaches, in many cases generating 50% more near-native docked conformations. Although the potential is far from optimal for antibody-antigen pairs, the results are still slightly better than those given by an earlier FFT method. The docking program PIPER is freely available for noncommercial applications.
引用
收藏
页码:392 / 406
页数:15
相关论文
共 49 条
[1]   A docking analysis of the statistical physics of protein-protein recognition [J].
Bernauer, J ;
Poupon, A ;
Azé, J ;
Janin, J .
PHYSICAL BIOLOGY, 2005, 2 (02) :S17-S23
[2]   Protein-protein association kinetics and protein docking [J].
Camacho, CJ ;
Vajda, S .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (01) :36-40
[3]  
Camacho CJ, 2000, PROTEINS, V40, P525, DOI 10.1002/1097-0134(20000815)40:3<525::AID-PROT190>3.0.CO
[4]  
2-F
[5]   Dissecting protein-protein recognition sites [J].
Chakrabarti, P ;
Janin, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :334-343
[6]   ZDOCK: An initial-stage protein-docking algorithm [J].
Chen, R ;
Li, L ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2003, 52 (01) :80-87
[7]   A protein-protein docking benchmark [J].
Chen, R ;
Mintseris, J ;
Janin, J ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 2003, 52 (01) :88-91
[8]   Docking unbound proteins using shape complementarity, desolvation, and electrostatics [J].
Chen, R ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :281-294
[9]   ClusPro:: An automated docking and discrimination method for the prediction of protein complexes [J].
Comeau, SR ;
Gatchell, DW ;
Vajda, S ;
Camacho, CJ .
BIOINFORMATICS, 2004, 20 (01) :45-50
[10]   Soft protein-protein docking in internal coordinates [J].
Fernández-Recio, J ;
Totrov, M ;
Abagyan, R .
PROTEIN SCIENCE, 2002, 11 (02) :280-291