Transcriptional and translational control of the Salmonella fliC gene

被引:25
作者
Aldridge, Phillip [1 ]
Gnerer, Joshua [1 ]
Karlinsey, Joyce E. [1 ]
Hughes, Kelly T. [1 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
关键词
D O I
10.1128/JB.00094-06
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The flagellin gene fliC encodes the major component of the flagellum in Salmonella enterica serovar Typhimurium. This study reports the identification of a signal within the 5' untranslated region (5'UTR) of the fliC transcript required for the efficient expression and assembly of FliC into the growing flagellar structure. Primer extension mapping determined the transcription start site of the fliC flagellin gene to be 62 bases upstream of the AUG start codon. Using telA-fliC operon fusions, we show that the entire 62-base 5'UTR region of fliC was required for sufficient fliC mRNA translation to allow normal FliC flagellin assembly, suggesting that translation might be coupled to assembly. To identify sequence that might couple fliC mRNA translation to FliC secretion, the 5' end of the chromosomal fliC gene was mutagenized by PCR-directed mutagenesis. Single base sequences important for fliC-dependent transcription, translation, and motility were identified by using fliC-lacZ transcriptional and translational reporter constructs. Transcription-specific mutants identified the -10 and -35 regions of the consensus flagellar class 3 gene promoter. Single base changes defective in translation were located in three regions: the AUG start codon, the presumed ribosomal binding site region, and a region near the very 5' end of the fliC mRNA that corresponded to a potential stem-loop structure in the 5'UTR. Motility-specific mutants resulted from base substitutions only in the fliC-coding region. The results suggest that fliC mRNA translation is not coupled to FliC secretion by the flagellar type III secretion system.
引用
收藏
页码:4487 / 4496
页数:10
相关论文
共 37 条
[1]   Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator [J].
Aldridge, P ;
Jenal, U .
MOLECULAR MICROBIOLOGY, 1999, 32 (02) :379-391
[2]   Type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL [J].
Aldridge, P ;
Karlinsey, J ;
Hughes, KT .
MOLECULAR MICROBIOLOGY, 2003, 49 (05) :1333-1345
[3]   Regulation of flagellar assembly [J].
Aldridge, P ;
Hughes, KT .
CURRENT OPINION IN MICROBIOLOGY, 2002, 5 (02) :160-165
[4]   How and when are substrates selected for type III secretion? [J].
Aldridge, P ;
Hughes, KT .
TRENDS IN MICROBIOLOGY, 2001, 9 (05) :209-214
[5]   A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica [J].
Anderson, DM ;
Schneewind, O .
SCIENCE, 1997, 278 (5340) :1140-1143
[6]   From flagellum assembly to virulence: the extended family of type III export chaperones [J].
Bennett, JCQ ;
Hughes, C .
TRENDS IN MICROBIOLOGY, 2000, 8 (05) :202-204
[7]  
BERG HC, 1973, NATURE, V245, P380, DOI 10.1038/245380a0
[8]   Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism [J].
Bonifield, HR ;
Hughes, KT .
JOURNAL OF BACTERIOLOGY, 2003, 185 (12) :3567-3574
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   NEGATIVE REGULATORY LOCI COUPLING FLAGELLIN SYNTHESIS TO FLAGELLAR ASSEMBLY IN SALMONELLA-TYPHIMURIUM [J].
GILLEN, KL ;
HUGHES, KT .
JOURNAL OF BACTERIOLOGY, 1991, 173 (07) :2301-2310