Misiurewicz points in one-dimensional quadratic maps

被引:25
作者
Romera, M [1 ]
Pastor, G [1 ]
Montoya, F [1 ]
机构
[1] CONSEJO SUPER INVEST CIENT,INST FIS APLICADA,MADRID 28006,SPAIN
来源
PHYSICA A | 1996年 / 232卷 / 1-2期
关键词
D O I
10.1016/0378-4371(96)00127-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Misiurewicz points are constituted by the set of unstable or repellent points, sometimes called the set of exceptional points. These points, which are preperiodic and eventually periodic, play an important role in the ordering of hyperbolic components of one-dimensional quadratic maps. In this work we use graphic tools to analyse these points, by measuring their preperiods and periods, and by ordering and classifying them.
引用
收藏
页码:517 / 535
页数:19
相关论文
共 36 条
[1]  
[Anonymous], ANN NY ACAD SCI
[2]  
[Anonymous], COMMUN MATH PHYS
[3]  
Branner B., 1989, Chaos and Fractals: The Mathematics Behind the Computer Graphics (Proceedings of Symposia in Applied Mathematics, 39), VVolume 39, P75, DOI 10.1090/psapm/039
[4]  
CARLESON L, 1993, COMPLEX DYNAMICS, P133
[5]  
DOUADY A, 1984, PUBL MATH ORSAY, V8402
[6]  
DOUADY A, 1985, PUBL MATH ORSAY, V8502
[7]  
Douady A., 1986, BEAUTY FRACTALS, P161
[8]   SENSITIVE DEPENDENCE ON PARAMETERS IN NONLINEAR DYNAMICS [J].
FARMER, JD .
PHYSICAL REVIEW LETTERS, 1985, 55 (04) :351-354
[9]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[10]   RENORMALIZATION OF BINARY-TREES DERIVED FROM ONE-DIMENSIONAL UNIMODAL MAPS [J].
GE, YZ ;
RUSJAN, E ;
ZWEIFEL, P .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (5-6) :1265-1295