This report presents a study of the effects of the membrane fluidizer, benzyl alcohol, on NHE isoforms 1 and 3. Using transfectants of an NHE-deficient fibroblast, we analyzed each isoform separately. An increase in membrane fluidity resulted in a decrease of approximate to 50% in the specific activities of both NHE1 and NHE3. Only V-max was affected; K-Na was unchanged. This effect was specific, as Na+, K+, ATPase activity was slightly stimulated. Inhibition of NHE1 and NHE3 was reversible and de novo protein synthesis was not required to restore NHE activity after washout of fluidizer. Inhibition kinetics of NHE1 by amiloride, 5-(N,N-dimethyl)amiloride (DMA), 5-(N-hexamethyl)amiloride (HMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were largely unchanged. Half-maximal inhibition of NHE3 was also reached at approximately the same concentrations of amiloride and analogues in control and benzyl alcohol treated, suggesting that the amiloride binding site was unaffected. Inhibition of vesicular transport by incubation at 4 degrees C augmented the benzyl alcohol inhibition of NHE activity, suggesting that the fluidizer effect does not solely involve vesicle trafficking. In summary, our data demonstrate that the physical state of membrane lipids (fluidity) influences Na+/H+ exchange and may represent a physiological regulatory mechanism of NHE1 and NHE3 activity.