Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

被引:79
作者
Koizumi, Y
Kelly, JJ
Nakagawa, T
Urakawa, H
El-Fantroussi, S
Al-Muzaini, S
Fukui, M
Urushigawa, Y
Stahl, DA
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci, Dept Biol Sci, Hachioji, Tokyo 1920397, Japan
[2] Northwestern Univ, Dept Civil Engn, Evanston, IL 60208 USA
[3] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[4] Kuwait Inst Sci Res, Dept Environm Sci, Safat 13109, Kuwait
[5] Akita Prefectural Univ, Fac Syst Sci & Technol, Akita 0150055, Japan
关键词
D O I
10.1128/AEM.68.7.3215-3225.2002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.
引用
收藏
页码:3215 / 3225
页数:11
相关论文
共 64 条
[1]   ANAEROBIC OXIDATION OF SATURATED-HYDROCARBONS TO CO2 BY A NEW TYPE OF SULFATE-REDUCING BACTERIUM [J].
AECKERSBERG, F ;
BAK, F ;
WIDDEL, F .
ARCHIVES OF MICROBIOLOGY, 1991, 156 (01) :5-14
[2]   The oligonucleotide probe database [J].
Alm, EW ;
Oerther, DB ;
Larsen, N ;
Stahl, DA ;
Raskin, L .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (10) :3557-3559
[3]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[4]   MOLECULAR AND MICROSCOPIC IDENTIFICATION OF SULFATE-REDUCING BACTERIA IN MULTISPECIES BIOFILMS [J].
AMANN, RI ;
STROMLEY, J ;
DEVEREUX, R ;
KEY, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (02) :614-623
[5]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[6]   COMBINATION OF 16S RIBOSOMAL-RNA-TARGETED OLIGONUCLEOTIDE PROBES WITH FLOW-CYTOMETRY FOR ANALYZING MIXED MICROBIAL-POPULATIONS [J].
AMANN, RI ;
BINDER, BJ ;
OLSON, RJ ;
CHISHOLM, SW ;
DEVEREUX, R ;
STAHL, DA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (06) :1919-1925
[7]  
[Anonymous], 1996, MOL MICROBIAL ECOLOG
[8]   Portable system for microbial sample preparation and oligonucleotide microarray analysis [J].
Bavykin, SG ;
Akowski, JP ;
Zakhariev, VM ;
Barsky, VE ;
Perov, AN ;
Mirzabekov, AD .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (02) :922-928
[9]   PCR bias in ecological analysis:: A case study for quantitative Taq nuclease assays in analyses of microbial communities [J].
Becker, S ;
Böger, P ;
Oehlmann, R ;
Ernst, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (11) :4945-+
[10]   Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium [J].
Beller, HR ;
Spormann, AM ;
Sharma, PK ;
Cole, JR ;
Reinhard, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (04) :1188-1196